Твердотельные реле

производства International Rectifier

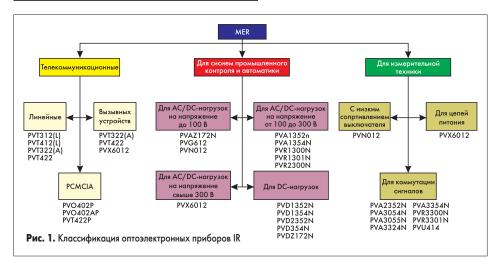
Впервые появившись, оптроны и твердотельные реле были призваны заменить существующие электромагнитные реле, но без присущих последним недостатков. Особенно активно процесс вытеснения электромагнитных реле твердотельными происходит в течение последних десяти лет. Он обусловлен большими успехами, достигнутыми ведущими производителями полупроводниковых приборов для силовой электроники и особенно — компанией International Rectifier, занявшей позиции лидера. Не случайно твердотельные реле занимают первое место в мировом обороте компании. В нашей стране, к сожалению, внимание к этой группе продуктов IR недостаточно акцентировано. И напрасно: для любого разработчика и производителя электронной аппаратуры намного удобнее иметь дело с одним хорошим поставщиком, продукция которого зарекомендовала себя на рынке своим высоким качеством и хорошими ценами, чем с несколькими, поставляющими компоненты, выполняющие те же функции.

Александр Зыбайло

alex_z@platan.ru

Классификация

Что же заставляет разработчиков отказываться от электромагнитных реле и использовать вместо них твердотельные? В числе основных преимуществ оптоэлектронных реле следует отметить:


- высокую надежность, обусловленную отсутствием механических контактов, и, как следствие, высокую наработку на отказ: число переключений составляет не менее 10 млрд, что в 1000 раз превышает тот же показатель для лучших образцов электромагнитных реле;
- неизменное контактное сопротивление в течение всего срока службы;
- отсутствие дребезга контактов, что снижает внутрисхемный уровень помех в аппаратуре и обеспечивает стабильность ее работы;
- отсутствие акустического шума от работы механических контактов;
- совместимость по входу с логическими микросхемами, обеспечивающая простоту интеграции твердотельных реле в цифровые устройства;
- отсутствие индуктивности причины возникновения нежелательных выбросов напряжения при переключении электромагнитных реле;
- необходимость низкоуровневых сигналов управления, что существенно упрощает схему управления твердотельным реле в отличие от электромагнитного, для управления работой которого, как правило, необходим электронный ключ с диодной защитой от выбросов напряжения;
- высокую виброустойчивость и ударостойкость, обусловленную отсутствием подвижных механических контактов;
- отличные характеристики изоляционных свойств как между входом и выходом реле, так и высокое сопротивление изоляции корпуса;

- высокое быстродействие;
- высокую устойчивость к воздействию внешних электромагнитных полей;
- малое энергопотребление: твердотельные реле потребляют электроэнергии на 95% меньше, чем электромагнитные реле;
- малые габариты и вес.

Компания International Rectifier предлагает широкий выбор оптоэлектронных приборов — оптронов и твердотельных реле различного назначения (рис. 1). В технической документации компании принято их сокращенное обозначение — MER (Microelectronic Relay).

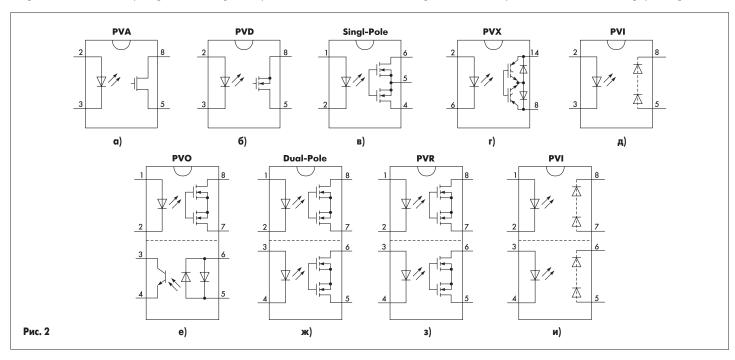
Телекоммуникационные реле предназначены для работы в факс-модемах, многофункциональных телефонах, беспроводных телефонах, автоответчиках, в коммутаторах и мультиплексорах телефонных линий, в аппаратуре систем безопасности.

Реле промышленного контроля и автоматики используются в качестве выходных реле программируемых логических контроллеров, драйверов соленоидов, клапанов, контакторов, электродвигателей, обмоток, индикаторов и дисплеев. Они предназначены для коммутации наиболее мощной нагрузки (на ток до 4,5 A в корпусе DIP 6), имеют низкое сопротивление во включенном состоянии (40 мОм), работают при напряжениях постоянного или переменного тока до 280 В, а при напряжении только постоянного тока — при напряжении до ±400 В, имеют высокую чувствительность (3 мА), обеспечивают замену ртутных реле. Эти реле полностью взаимозаменяемы с твердотельными реле производства других компаний, например, твердотельные реле HSSR8060 серии SSR компании Hewlett-Packard (в настоящее время Agilent) могут быть заменены аналогами производства IR: PVG612S — для поверхностного монтажа, PVG612 — для монтажа в отверстие.

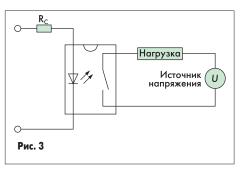
Реле для измерительной техники применяются в сканерах, мультиплексорах, системах сбора данных, контрольно-измерительном оборудовании. Они обеспечивают высокую скорость переключения, имеют высокое сопротивление в выключенном состоянии (1011 Ом), высокую чувствительность (2 мА), низкое отклонение значения напряжения включения при изменении температуры (0,2 мкВ). Реле этой группы производства компании IR обеспечивают полную замену твердотельных реле HSSR8200 серии SSR.

Технологии и конструкции

Главной особенностью твердотельных реле производства IR является использование выходных ключей, выполненных на полевых МОП или IGBT-транзисторах. В отличие от других производителей компания не выпускает реле с выходными ключами на биполярных транзисторах или тиристорах. По сравнению с ними ключи на МОП-транзисторах характеризуются линейной зависимостью тока от напряжения открытого ключа, падение напряжения на нем составляет менее 0,6 В. Более того, выходные ключи твердотельных реле IR на сдвоенных МОП-транзисторах обеспечивают двунаправленное пере-


ключение нагрузки и работают в цепях переменного тока. В качестве транзисторов ключей используются полевые МОП-транзисторы, выполненные по запатентованной IR технологии HEXFET или биполярные транзисторы с изолированным затвором — IGBT. При использовании твердотельных реле всегда следует учитывать особенности IGBT и МОП-транзисторов: IGBT-транзисторы работают на низких частотах (до 20 кГц), допускают небольшой разброс параметров нагрузки, подходят для работы в высоковольтных приложениях при достаточно высокой мощности нагрузки и при более высокой температуре; МОП-транзисторы, напротив, имеют высокое быстродействие (более 200 кГц), допускают широкий разброс параметров нагрузки, но в то же время работают при более низких рабочих напряжениях и сравнительно низкой мощности нагрузки.

Двунаправленные ключи твердотельных реле на полевых МОП-транзисторах получили название BOSFET. На рис. 2 представлены варианты условных электрических схем твердотельных реле и оптронов, выпускаемых компанией IR. В 2001 году технология производства BOSFET-ключей была усовершенствована — в них стали применять «разумные» монолитные оптоэлектронные из-

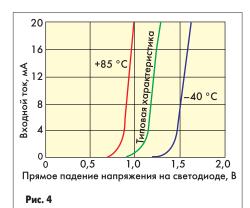

лучатели и выходные ключи на НЕХГЕТтранзисторах. Обновленная технология получила название BOSFET Upgrade, а к обозначению микроэлектронных реле добавился суффикс N на конце (если суффикс состоит из двух букв — NS, то это значит, что микроэлектронное реле, выполненное по технологии BOSFET Upgrade, предназначено для поверхностного монтажа). Обновленная технология используется так же и при производстве оптронов.

В том случае, если требуется переключение столь мощной нагрузки, что выпускаемые для этой цели твердотельные реле не подходят, IR предусмотрительно выпускает серию оптронов по технологии Lego-Block — PVI5033R (рис. 2, и). Их применяют совместно с мощными дискретными HEXFET или IGBT-транзисторами, используемыми в качестве ключевых, и, таким образом, получают твердотельные реле, рассчитанные на заданную мощность нагрузки. Они предназначены только для функции включения и выключения и не годятся для работы в быстродействующих приложениях. В таких реле обеспечивается полная оптическая развязка между логической схемой управления и нагрузкой, работающей при высоких значениях рабочего напряжения и тока нагрузки. Раздельное управление посредством двух оптоэлектронных пар делает возможной реализацию твердотельного реле со схемой 1 Form C, например, однополюсного реле на два положения.

Применение в твердотельных реле, например PVX6012, в качестве ключей IGBT-транзисторов позволяет коммутировать нагрузку мощностью до 400 Вт на постоянном токе или до 280 Вт — на переменном. Кроме того, такие реле полностью заменяют опасные для окружающей среды и здоровья человека ртутные реле и в отличие от них могут быть установлены в любом положении, в то время как ртутные устанавливают, как правило, вертикально. Цены на твердотельные реле существенно ниже цен на ртутные реле.

PVR-реле

В технической документации IR твердотельные реле обозначаются сокращением PVR — Photovoltaic Relay. На рис. 3 показана упрощенная схема включения PVR. Твердотельное реле является токозависимым устройством, то есть его включение зависит от входного тока. Для его правильной работы необходимо правильно рассчитать сопротивление токоограничительного резистора R_C. С одной стороны, этот резистор должен обеспечить ток достаточной для включения величины, а с другой — ограничить величину этого тока так, чтобы он не превышал 25 мА. При этом следует также учитывать температуру среды, в которой будет работать реле. Зависимость входного тока от падения напряжения на светодиоде при различных температурах показана на рис. 4. Рассчитать сопротивление ограничительного резистора можно по формуле:


$$R_C \le \frac{U_{BX} - U_{LED}}{I_C},$$

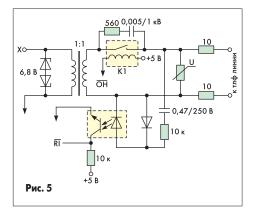
где I_C — ток включения.

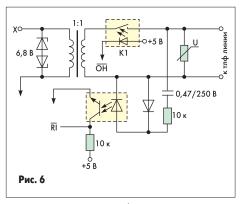
Например, приняв минимальное входное напряжение равным 4,5 В, ток включения — 5 мА, температуру окружающей среды — −40 °С, а падение напряжения на светодиоде — 1,6 В, в результате расчета получим величину сопротивления ≤580 Ом. Это максимальная величина сопротивления, при которой обеспечивается надежное включение реле. При высоких температурах падение напряжения на светодиоде обычно принимают равным 0,9 В.

Необходимо рассчитать и минимально допустимую величину сопротивления, чтобы избежать выхода светодиода из строя. Ее рассчитывают по формуле:

$$R_C \ge \frac{U_{BX} - U_{LED}}{I_C}.$$

При расчете в формулу подставляют максимальные значения величин: входного напряжения — 6 В (продолжаем расчет примера), входного тока — 25 мА при максимальной температуре 85 °С. Падение напряжения на светодиоде, как было отмечено, принимают равным 0,9 В. В результате получаем расчетную величину минимально допустимого сопротивления. Оно составит 204 Ом. Следовательно, в данном случае величину сопротивления резистора $R_{\rm C}$ следует выбирать в пределах 204–580 Ом.


Твердотельные реле в телекоммуникационных устройствах


Твердотельные реле в телекоммуникационных устройствах предназначены, прежде всего, для замены механических реле в схемах поднятия трубки, импульсного набора номера в телефонных аппаратах, факсах, модемах. Именно механические реле в таких устройствах наиболее подвержены выходу из строя. На рис. 5, 6 показаны схемы входного линейного устройства факс-модема с механическим реле и с твердотельным реле типа PVT412L, которым это механическое реле заменено. Этот пример ясно показывает, что при переходе на твердотельные реле не только повысится надежность устройства, но, кроме того, потребуется меньше компонентов для схемы, а именно:

- исключается цепь для борьбы с дребезгом R1C1, поскольку в твердотельных реле явление дребезга контактов отсутствует;
- нет необходимости в предохранительных резисторах R2 и R3, благодаря токоограничивающим свойствам реле PVT412L. Это наиболее важное преимущество, так как в результате перенапряжения, например, при грозовом разряде, предохранительные резисторы в модеме с механическим реле перегорают, что неизбежно потребует ремонта. При использовании твердотельного реле такой проблемы не возникает.

В числе других преимуществ такой замены — экономия места на печатной плате и экономия в средствах примерно на 15% (при больших объемах производства).

Среди твердотельных реле производства IR, которые с успехом применяются как в телекоммуникационном оборудовании, так и в устройствах другого назначения — силовых, телекоммуникационных, измерительных и т. д., следует отметить новое оптоэлектронное реле PVN012. В этом реле использованы ключи на полевых транзисторах HEXFET 5-го поколения (Generation V), которые управляются оптоэлектронным генера-

тором. Реле PVN012 обладает хорошей линейностью, работает в цепях постоянного и переменного тока (2,5–4,5 A), имеет контактное сопротивление 100 мОм и напряжение пробоя между входом и выходом 4000 В (переменного тока).

Низкопрофильные реле серии PVO предназначены для работы в PCMCIA-картах.

Твердотельные реле для приборостроения и промышленной аппаратуры

Твердотельные реле для применения в приборостроении и системах промышленной автоматики — это самая большая группа реле как по количеству, так и по разнообразию конструкции и характеристик, потому что такие реле предназначены для выполнения самых разнообразных задач.

Существует три схемы включения твердотельных реле: схема А — для работы в цепях переменного и постоянного тока и схемы В, С — для работы в цепях постоянного тока (рис. 7). Соответственно, допустимый ток нагрузки минимален для схемы включения А, больше — для схемы включения В и максимален — для схемы включения С. Его величина для конкретной схемы включения указана в технических характеристиках реле.

Твердотельные оптоэлектронные реле IR по назначению нельзя четко выделить в от-

Таблица 1

Компания	Макс. напряжение нагрузки, В	Макс. ток нагрузки, мА (AC/DC)	Макс. ток нагрузки, мА (только DC)	Обозначение	Сопротивление включения, Ом (AC/DC)	Сопротивление включения, Ом (только DC)
IR	150	550	825	PVT212	0,75	0,25
Infineon	150	400	800	LH1517	3,0	0,85
Clare	60	1000	1800	LCA710	0,5	0,15
Aromat	200	250	500	AQV257	4,0	1,0

Таблица 2

T	Произво-	D	Замена н	10 0	птоэлектр	онн	ые приборы	IR:	Корпус изде-	
Тип	дитель	Вид	прямая		близкая		возможная		лия произво- дителя	изделия IR
AQV101	Aromat	TTP			PVG612		PVG613		DIP-6	DIP-6
AQV102	Aromat	TTP			PVG612	(a)	PVG613	(a)	DIP-6	DIP-6
AQV103	Aromat	TTP			PVT312				DIP-6	DIP-6
AQV104	Aromat	TTP	PVT412A	(a)	PVT412				DIP-6	DIP-6
AQV201	Aromat	TTP	PVG612	(a)	PVG613	(a)			DIP-6	DIP-6
AQV202	Aromat	TTP	PVG612	(a)	PVG613	(a)			DIP-6	DIP-6
AQV203	Aromat	TTP	PVT312						DIP-6	DIP-6
AQV204	Aromat	TTP	PVT412A	(a)	PVT412				DIP-6	DIP-6
AQV210(E)(H)	Aromat	TTP	PVT412						DIP-6	DIP-6
AQV210S	Aromat	TTP					PVT412	(c)	SOP-6	DIP-6
AQV212	Aromat	TTP	PVG612	(a)	PVG613	(a)			DIP-6	DIP-6
AQV212S	Aromat	TTP					PVG612S	(c)	SOP-6	DIP-6
AQV214(E)(H)	Aromat	TTP	PVU414						DIP-6	DIP-6
AQV214S	Aromat	TTP					PVU414S	(c)	SOP-6	DIP-6
AQV215	Aromat	TTP					PVA1352N	(c)	DIP-6	DIP-8
AQV215S	Aromat	TTP					PVA1352NS	(c)	SOP-6	DIP-8
AQV217	Aromat	TTP	PVT312						DIP-6	DIP-6
AQV217S	Aromat	TTP					PVT312S	(c)	SOP-6	DIP-6
AQV221	Aromat	TTP					PVA1354N	(c)	DIP-6	DIP-8
AQV225	Aromat	TTP					PVA3354N	(c)	DIP-6	DIP-8
AQV224N	Aromat	TTP					PVA3055N	(c)	DIP-6	DIP-8
AQV227N	Aromat	TTP					PVA3354N	(c)	DIP-6	DIP-8
AQV251	Aromat	TTP	PVG612	(a)	PVG613	(a)			DIP-6	DIP-6
AQV252	Aromat	TTP	PVG612	(a)	PVG613	(a)			DIP-6	DIP-6
AQV253(H)	Aromat	TTP	PVT312						DIP-6	DIP-6
AQV254(H)	Aromat	TTP			PVU414				DIP-6	DIP6
AQV255	Aromat	TTP					PVA1352N	(c)	DIP-6	DIP-8
AQV257	Aromat	TTP			PVT312			, ,	DIP-6	DIP-6
AQW210	Aromat	TTP	PVT422						DIP-8	DIP-8
AQW210EH	Aromat	TTP	PVT422						DIP-8	DIP-8
AQW210S	Aromat	TTP					PVT422P	(c)	SOP-8	Thin-Pak
AQW210TS	Aromat	TTP					PVO402P	(c)	SOP-8	Thin-Pak
AQW214	Aromat	TTP			PVT422				DIP-8	DIP-8
AQW214EH	Aromat	TTP			PVT422				DIP-8	DIP-8
AQW214S	Aromat	TTP					PVT422P	(c)	SOP-8	Thin-Pak
AQW215	Aromat	TTP			PVT322		PVT322A	(-)	DIP-8	DIP-8
AQW217	Aromat	TTP	PVT322	(a)	PVT322A	(a)			DIP-8	DIP-8
AQW254	Aromat	TTP	171022	(4)	PVT422	(4)			DIP-8	DIP-8
AQY221N1S	Aromat	TTP	PVY116	(a)					SOP-4	SOP-4
C60-10	Teledyne	TTP	.,	(-)	PVG612		PVG613		DIP-6	DIP-6
DIG-11-06-030	Dionics	оптрон			110012		PVI5080N	(c)	DIP-6	DIP-8
DIG-11-06-150	Dionics	оптрон					PVI5080N	(c)	DIP-6	DIP-8
DIG-11-08-050	Dionics	оптрон					PVI5080N	(c)	DIP-6	DIP-8
DIG-12-06-025	Dionics	_					PVI1050N	(~)	DIP-8	DIP-8
DIG-12-06-100	Dionics	оптрон					PVI1050N		DIP-8	DIP-8
DIG-12-08-010	Dionics	оптрон					PVI1050N		DIP-8	DIP-8
	Dionics	<u> </u>							DIP-8	DIP-8
DIG-12-08-045		оптрон			PVI5013R		PVI1050N		DIP-8	
FDA200	Clare	оптрон	D\/(50100		rviou13R					DIP-8
FDA210	Clare	оптрон	PVI5013R		DV/IEO 10D				DIP-8	DIP-8
FDA210	Clare	оптрон	DVC (10		PVI5013R				DIP-8	DIP-8
HSSR8060	H-P	TTP	PVG612		PVG613		DV(A 2.0.C.C.)		DIP-6	DIP-6
HSSR8200	H-P	TTP					PVA3055N		DIP-8	DIP-8
IL329	Siemens	TTP	DVT 400				PVO402P		SOP-18	Thin-Pak
LAA100	Clare	TTP	PVT422						DIP-8	DIP-8
LAA110	Clare	TTP	PVT422						DIP-8	DIP-8
LAA110P(E)	Clare	TTP	PVT422P	, .	D) (700 - 1	, .			SOP-8	Thin-Pak
LAA120	Clare	TTP	PVT322	(a)	PVT322A	(a)			DIP-8	DIP-8
LAA125	Clare	TTP			PVT322	(a)			DIP-8	DIP-8
LAA127	Clare	TTP	PVT322		PVT322A	(a)			DIP-8	DIP-8
LCA110(L)	Clare	TTP	PVT412(L)						DIP-6	DIP-6
LCA120(L)	Clare	TTP	PVT312(L)						DIP-6	DIP-6
LCA125(L)	Clare	TTP			PVT412(L)				DIP-6	DIP-6
LCA127(L)	Clare	TTP	PVT312(L)	L					DIP-6	DIP-6
	Clare	TTP	PVG612		PVG613				DIP-6	DIP-6
LCA710									DID /	DIP-6
LCA710 LH1056	Siemens	TTP	PVT412L						DIP-6	DIF-0
		TTP	PVT412L PVT412L						DIP-6	DIP-6
LH1056	Siemens									

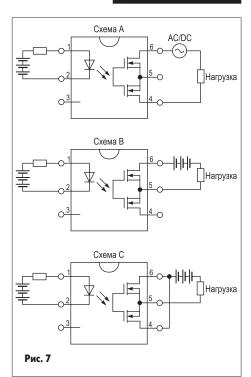
_	Произво-		Замена на оптоэлектронные приборы IR:						Корпус изде-	
Тип	дитель	Вид	прямая		близкая		возможная		лия произво- дителя	изделия IR
LH1262	Vishay	оптрон			PVI5033R				DIP-8	DIP-8
LH1500	Vishay	TTP			PVT412L				DIP-6	DIP-6
LH1503	Vishay	TTP					PVT422		DIP-8	DIP-8
LH1504	Siemens	TTP	PVT412L						DIP-6	DIP-6
LH1505	Siemens	TTP			PVT322(A)	(a)			DIP-8	DIP-8
LH1510	Vishay	TTP	PVT312L						DIP-6	DIP-6
LH1513	Vishay	TTP					PVT322(A)		DIP-8	DIP-8
LH1516	Siemens	TTP	PVT412A	(a)					DIP-6	DIP-6
LH1517	Siemens	TTP	PVT212	(a)					DIP-6	DIP-6
LH1518 LH1519	Vishay	TTP	PVT312L		PVT312L				DIP-6	DIP-6
LH1519 LH1520	Vishay Vishay	TTP			PVT422				DIP-6 DIP-8	DIP-8
LH1522	Vishay	TTP			PVT322	(a)	PVT322A	(a)	DIP-8	DIP-8
LH1524	Siemens	TTP			PVT422	(4)	171322A	(u)	DIP-8	DIP-8
LH1525	Vishay	TTP	PVT412L		111422				DIP-6	DIP-6
LH1526	Siemens	TTP	.,,		PVT422				DIP-8	DIP-8
LH1529	Siemens	TTP			PVO402AP				SOP-8	Thin-Pak
LH1530	Siemens	TTP	PVT412						DIP-6	DIP-6
LH1531	Siemens	TTP			PVT422				DIP-8	DIP-8
LH1532	Siemens	TTP			PVT422				DIP-8	DIP-8
LH1533	Siemens	TTP			PVT422				DIP-8	DIP-8
LH1535	Siemens	TTP			PVT412L				DIP-6	DIP-6
LH1540	Vishay	TTP	PVT412L						DIP-6	DIP-6
LH1541	Vishay	TTP			PVU414				DIP-6	DIP-6
LH1544	Vishay	TTP	D) (T :		PVT422				DIP-8	DIP-8
LH1546	Vishay	TTP	PVT412L						DIP-6	DIP-6
LH1547	Vishay	TTP	PVT412L		D) (O (OOD				DIP-6	DIP-6
LH1549 LH1550	Siemens Vishay	TTP			PVO402P PVT412L				SOP-8 DIP-6	Thin-Pak DIP-6
OAA160	Clare	TTP	PVT322		PVT422				DIP-8	DIP-0
OCM200	OKI	TTP	PVG612		F V 1422				DIP-6	DIP-6
OCM201	OKI	TTP	PVG612						DIP-6	DIP-6
OCM202	OKI	TTP	PVG612						DIP-6	DIP-6
OCM203	OKI	TTP	PVG612						DIP-6	DIP-6
OCM206	OKI	TTP	PVG612	Г					DIP-6	DIP-6
OCM207	OKI	TTP	PVG612						DIP-6	DIP-6
OCM240	OKI	TTP		Ì	PVU414				DIP-6	DIP-6
OCM241	OKI	TTP			PVU414				DIP-6	DIP-6
OCM242	OKI	TTP			PVU414				DIP-6	DIP-6
OCM243	OKI	TTP			PVU414				DIP-6	DIP-6
OCM244	OKI	TTP			PVU414				DIP-6	DIP-6
OCM245	OKI	TTP	D. (1.4.2.4		PVU414				DIP-6	DIP-6
OCM246	OKI	TTP	PVU414						DIP-6	DIP-6
OCM247 OCM428	OKI	TTP	PVU414		D\/T222				DIP-6	DIP-6
OCM428 OCM448	OKI OKI	TTP			PVT322 PVT422				DIP-8	DIP-8
OCM448 OMA130	Clare	TTP	PVG612		TVIAZZ				DIP-8	DIP-8
OMA160	Clare	TTP	1,0012		PVU414				DIP-6	DIP-6
PAA110	Clare	TTP			PVT422				DIP-8	DIP-8
PAA150	Clare	TTP	PVT322A						DIP-8	DIP-8
PLA110(L)	Clare	TTP	PVT412A	(a)	PVT412(L)				DIP-6	DIP-6
PLA140	Clare	TTP	PVT412A	(a)					DIP-6	DIP-6
PLA150(L)	Clare	TTP			PVT312(L)				DIP-6	DIP-6
PLA191	Clare	TTP	PVT412A	(a)					DIP-6	DIP-6
PS7200A-1A	NEC	TTP	PVY116	(a)					SOP-4	SOP-4
PS7200B-1A	NEC	TTP			PVY116				SOP-4	SOP-4
PS7200K-1A	NEC	TTP			PVY116	(a)			SOP-4	SOP-4
PS7200R-1A	NEC	TTP	PVY116	(a)					SOP-4	SOP-4
TLP296G	Toshiba	TTP	PVT422		D)/O/10				DIP-8	DIP-8
TLP595A	Toshiba	TTP	PVG612		PVG613				DIP-6	DIP-6
TLP595G	Toshiba	TTP	D\/T.410		PVT412				DIP-6	DIP-6
TLP596G	Toshiba	TTP	PVT412						DIP-6	DIP-6
TLP597G TLP795G	Toshiba Toshiba	TTP	PVT412		PVT412				DIP-6	DIP-6
TS117P(E)	Clare	TTP	PVO402P		T V 14 12				SOP-8	Thin-Pak
TS190P(E)	Clare	TTP	PVO402AP						SOP-8	Thin-Pak
XCA110	Clare	TTP	PVT412						DIP-6	DIP-6
XCA110 XCA120	Clare	TTP	PVT412						DIP-6	DIP-6
	3.0.0		12						J., J	0

Примечания:

- 1. При прямой замене полное соответствие назначения и расположения выводов.
- 2. При близкой замене имеются некоторые отличия электрических параметров; возможно, потребуется изменить схему.
- 3. При возможной замене имеются отличия в типах используемых корпусов или электрических параметрах, потребуется изменить схему, при этом:
- а) предлагаемая замена обладает более низким контактным сопротивлением;
- b) усовершенствованный компонент необходимо связаться с производителем для получения дополнительной информации;
- с) компонент для замены имеет корпус другого типа;
- d) не допускается использование в новых разработках.
- 4. ТТР твердотельное реле.

Компоненты

дельные группы, поскольку они могут выполнять свои функции в различных цепях. Поэтому при их подборе следует принимать во внимание «конкретную обстановку»: для работы в мультиплексорах, приборах, в которых требуются высокое быстродействие, линейность характеристик, высокая чувствительность и стабильность работы, следует использовать быстродействующие реле; в устройствах питания следует подбирать реле по рабочему напряжению и допустимому току нагрузки и обращать внимание на напряжение пробоя между входом и выходом. В тех случаях, когда не удается подобрать необходимое реле, выйти из положения можно, если использовать схему на дискретных полевых или IGBT-транзисторных ключах и оптопару серии PVI.


Новое реле PVY116 предназначено для замены обычных и ртутных механических реле. Его особенность — высокое быстродействие, что делает это реле необходимым компонентом в автоматизированном измерительном оборудовании, приборах и системах сбора данных. PVY116 выпускают только в корпусе SOP-4, предназначенном для поверхностного монтажа.

Новые реле серии PVT212 предназначены для замены популярных твердотельных реле LH1517 производства AT&T Microelectronics и Infineon, а также однотипных реле других компаний. Сравнительные характеристики этих реле приведены в таблице 1.

Твердотельные реле типа PVX6012 выполнены на выходных ключах IGBT и HEXFRED (см. рис. 2, *г*) в 14-выводном корпусе DIP. Рабочее напряжение для них составляет 0–280 В (среднеквадратичное значение) на переменном токе и 0–400 В — на постоянном. Максимальный ток нагрузки составляет 1 А. Реле этого типа предназначены для работы в системах промышленной автоматики и управления, контрольно-измерительном оборудовании, для замены электромагнитных и ртутных реле.

Твердотельные реле IR выпускаются в 6-, 8-, 14- и 16-выводных корпусах DIP, 6-выводных корпусах Thin-Pak.

В таблице 2 приведен перечень возможных замен твердотельных реле других производителей на аналогичные реле IR.

