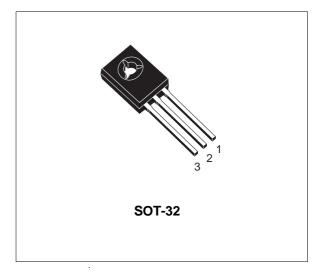
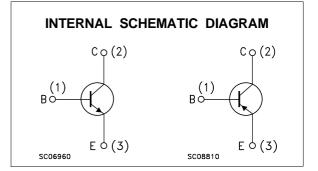


MJE340 MJE350

COMPLEMETARY SILICON POWER TRANSISTORS

- STMicroelectronics PREFERRED SALESTYPES
- COMPLEMENTARY PNP NPN DEVICES


APPLICATIONS


 LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

DESCRIPTION

The MJE340 is a Silicon Epitaxial Planar NPN transistor intended for use in medium power linear and switching applications. It is mounted in SOT-32.

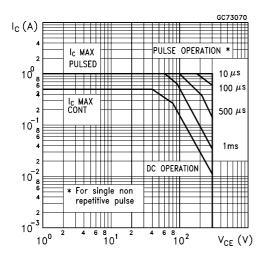
The complementary PNP type is MJE350.

ABSOLUTE MAXIMUM RATINGS

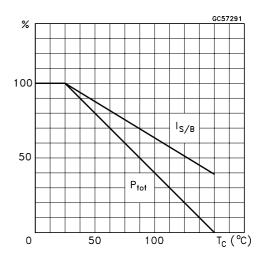
Symbol	Parameter		Value	Unit	
	NPN		MJE340		
		PNP	MJE350		
V_{CEO}	Collector-Emitter Voltage (I _B = 0)		300	V	
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$		3	V	
Ic	Collector Current		0.5	Α	
P _{tot}	Total Power Dissipation at $T_{case} \le 25 \ ^{\circ}C$		20.8	W	
T _{stg}	Storage Temperature		-65 to 150	°C	
Tj	Max Operating Junction Temperature		150	°C	

For PNP types voltage and current values are negative.

THERMAL DATA

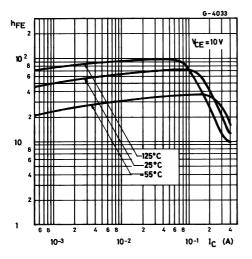

R _{thj-case} Thermal Resistance Junction-case	Max	6.0	°C/W	
--	-----	-----	------	--

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

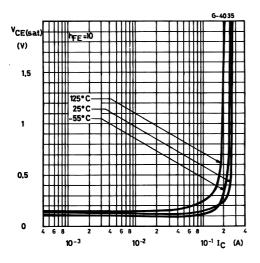

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 300 V			100	μA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	$V_{EB} = 3 V$			100	μA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage $(I_B = 0)$	I _C = 1 mA	300			V
h _{FE}	DC Current Gain	I _C = 50 mA V _{CE} = 10) V 30		240	

* Pulsed: Pulse duration = $300\mu s$, duty cycle $\leq 2\%$

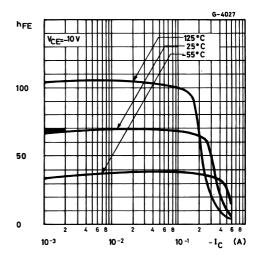
Safe Operating Area

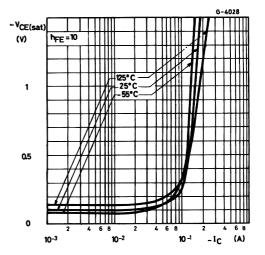


Derating Curve

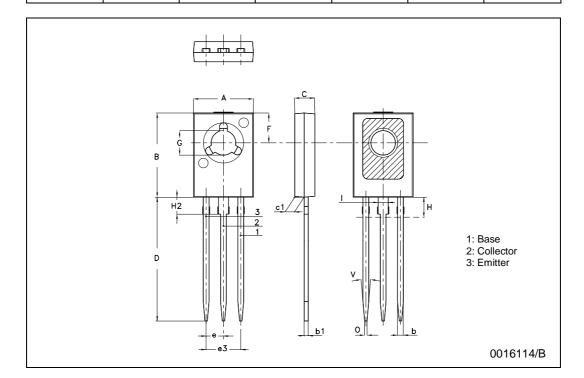


57


DC Current Gain (NPN type)


Collector-Emitter Saturation Voltage (NPN type)

DC Current Gain (PNP type)


Collector-Emitter Saturation Voltage (PNP type)

57

DIM.		mm			inch	
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	7.4		7.8	0.291		0.307
В	10.5		10.8	0.413		0.425
b	0.7		0.9	0.028		0.035
b1	0.40		0.65	0.015		0.025
С	2.4		2.7	0.094		0.106
c1	1.0		1.3	0.039		0.051
D	15.4		16.0	0.606		0.630
е		2.2			0.087	
e3		4.4			0.173	
F		3.8			0.150	
G	3		3.2	0.118		0.126
Н			2.54			0.100
H2		2.15			0.084	
I		1.27			0.05	
0		0.3			0.011	
V		10 [°]			10 [°]	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

 $\ensuremath{\textcircled{\sc 0}}$ 2003 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

57