National Semiconductor

LH4106/LH4106C \pm 5V High Speed Operational Amplifier

General Description

The LH4106 is a wideband op amp designed to operate with \pm 5V power supplies. It features a 30 MHz bandwidth and can drive 50 or 75 Ω loads directly at slew rates in excess of 170 V/ μ s.

It is intended to fulfill a wide range of applications; such as, precision cable drivers, buffers in high speed data acquisition systems, and high speed peak detectors.

Features

- Operates from V_s of ±5V
- Unity gain stable
- Very high slew rate-170 V/µs
- Wide small signal bandwidth—32 MHz
- Low supply current—16 mA
- Drives 50 or 75Ω directly

Applications

- Flash A/D input buffers
- Video amplifier
- High speed summing amplifiers
- Pulse amplifiers
- Precision cable drivers

Block Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V _S	±7.5V
Steady State Output Current, IO	40 mA
Power Dissipation, P _D (See Curve)	600 mW
Differential Input Voltage, VIN	±V _S
Input Voltage Range, V _{CM}	(V + - 0.7V) to $(V 7V)$

Operating Temperature Range, T _A	
LH4106	-55°C to +125°C
LH4106C	-25°C to +85°C
Storage Temperature Range, T _{STG}	-65°C to +150°C
Maximum Junction Temperature, Tj	150°C
Lead Temperature (Soldering < 10 sec.)	300°C
ESD Rating	±700V
(100 pF in series with 1500 ohms)	

DC Electrical Characteristics

 $V_S = \pm 5V$, $T_A = 25^{\circ}C$, $R_S = 50\Omega$, $R_L = 100\Omega$ unless otherwise noted (Note 1)

		Parameter Conditions			LH4106C	Units	
Symbol	Parameter			Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
Vos	Input Offset Voltage	$V_{IN} = 0V$		5	15		mV
V _{OS/AT}	Offset Voltage Drift			10			μV/°C
I _B	Input Bias Current	(Note 4)		2	6		μA
los	Input Offset Current	(Note 4)		150	1200		nA
CIN	Input Capacitance	A _V = +1 @ 10 MHz		1.5			pF
R _{IN}	Input Resistance			325			kΩ
Avol	Large Signal Voltage Gain	$R_L = 1 k\Omega, V_{OUT} \cong \pm 2V$		65	60		dB (Min)
Vo	Output Voltage Swing	$R_L = 100\Omega + V_0$		+3	+2		V (Min)
			~V _o	-2.6	-2		• (winty
V _{CM}	Input Common Mode Range	See CMRR			+V _S - 1.5 -V _S + 2.0		V (Min)
CMRR	Common Mode Rejection Ratio			90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$V_{OC} = \pm 3V$ to $\pm 6V$, R _L = 1 k Ω		80	70		dB (Min)
Is	Supply Current	No Load		16	20		mA

DC Electrical Characteristics

 V_S = $\pm5V,\,T_A$ = 25°C, R_S = 50 $\Omega,\,R_L$ = 100 Ω unless otherwise noted (Note 1)

Symbol	Parameter	Conditions		Units		
			Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
Vos	Input Offset Voltage	$V_{IN} = 0V$	5	20		mV
V _{OS/AT}	Offset Voltage Drift		10			μV/°C
1 _B	Input Bias Current	(Note 4)	2	6		μA
los	Input Offset Current	(Note 4)	150	1500		nA
CIN	Input Capacitance	A _V = +1 @ 10 MHz	1.5			pF
R _{IN}	Input Resistance		325			kΩ
Avol	Large Signal Voltage Gain	$R_L = 1 k\Omega, V_{OUT} \cong \pm 2V$	65	60		dB (Min)

LH4106/LH4106C

DC Electrical Characteristics

 $V_S \approx \pm 5V$, $T_A = 25^{\circ}$ C, $R_S = 50\Omega$, $R_L = 100\Omega$ unless otherwise noted (Note 1) (Continued)

		Conditions		LH4106			Units
Symbol	Parameter			Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
Vo	Output Voltage Swing	$R_L = 100\Omega$	+ V0	+3	+2		
			-v _o	-2.6	-2		V (Min)
V _{CM}	Input Common Mode Range	See CMRR			+V _S - 1.5 -V _S + 2.0		v (iviiri)
CMRR	Common Mode Rejection Ratio			90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$V_{OC} = \pm 3V$ to $\pm 6V$, R _L = 1 k Ω		80	70		
Is	Supply Current	No Load		16	20		mA

AC Electrical Characteristics $v_S = \pm 5V$, $T_A = 25^{\circ}C$, $R_S = R_L = 50\Omega$ unless otherwise noted (Note 1)

	Parameter	Conditions		LH4106/LH41	Units	
Symbol			Тур	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
ts	Settling Time to 0.1%		120			ns
SR	Slew Rate	$V_0 = \pm 2V$	170	120		V∕µs (Min)
tr	Small Signal Rise Time	$A_V = 1, V_O = \pm 0.1V$	11			ns
	Power Bandwidth	(Note 6)	7			MHz
	Differential Gain	NTSC, $A_V = +4$	<0.1			%
	Differential Phase	NTSC, $A_V = +4$	0.1			degrees
	GBWP		34			MHz
	Phase Margin		60			degrees
	Input Noise Voltage	f = 10 kHz	15			nV/√Hz
	Input Noise Current	f = 10 kHz	1.5			pa/√Hz
SSBW	Small Signal Bandwidth	(Note 7)	32			MHz

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH4106C is -25°C to +85°C, and LH4106 is -55°C to +125°C.

Note 2: Tested limits are guaranteed and 100% production tested.

Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.

Note 4: Specification is at 25°C junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature may exceed value at T₁ = 25°C.

Note 5: When the LH4106 is operated at elevated temperature (such as 125°), some form of heatsinking or forced air cooling is required. The quiescent power with V_S = ±5V is 160 mW, whereas, the package is only rated to 170 mW without a heatsink at 125°C.

Note 6: Power bandwidth is calculated from slew rate measurement using BW = Slew Rate/ 2π V Peak.

Note 7: Calculated from t_r using SSBW = 0.35/ t_r .

