R Natio	September 1995						
LM6161/L High Spee			plifier				
General Desc The LM6161 family of cellent speed-power 50 MHz unity gain sta Further power savin possible by taking ad operating supply volta + 5V. These amplifiers are Integrated PNP) proc tors that are true com vices. This advanced speed performance w pensive dielectric isol	f high-speed amplifi product in deliverir ibility with only 5 mA gs and application vantage of the wide age which extends a built with National's ess which provides plements to the alrr junction-isolated pro- vithout the need for	ng 300 V/µs and of supply current convenience are dynamic range ir II the way down to s VIPTM (Vertically fast PNP transis eady fast NPN de pcess delivers high	High unity gain freq 50 Mi Low supply current 5 m Fast settling 120 ns to 0.1 Low differential gain <0.1 Low differential phase 0. Wide supply range 4.75V to 32 Stable with unlimited capacitive load Well behaved; easy to apply				
Connection I 10-Lead F	latpak 19 NC 19 NC 5 Voj ADJUST 19 NC 70 Voj ADJUST 19 NC 10 NC	V _{OS} ADJUST	Lead LCC	— v _{os} adjust — v• — vout /9057-14 20A	Vos Adjust V+ Vour N/C 8 7 6 5 1 2 3 4 Vos INV NI V- Adjust input input		
	Temperature Range			NSC	See NS Package Number J08A, N08E or M08A		
$\begin{array}{l} \mbox{Military} \\ -55^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{A}} \leq \ + \mbox{125}^{\circ}\mbox{C} \end{array}$	$\begin{array}{l} \mbox{Industrial} \\ -25^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{A}} \leq \ +85^{\circ}\mbox{C} \end{array}$	$\begin{array}{l} \mbox{Commercial} \\ \mbox{0}^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{A}} \leq + 70^{\circ}\mbox{C} \end{array}$	Package	Drawing			
	LM6261N	LM6361N	8-Pin Molded DIP	N08E			
LM6161J/883 5962-8962101PA		LM6361J	8-Pin Ceramic DIP	J08A			
	LM6261M	LM6361M	8-Pin Molded Surface Mt.	M08A			
LM6161E/883 5962-89621012A			20-Lead LCC	E20A			
LM6161W/883 5962-8962101HA			10-Pin Ceramic Flatpak	W10A			
VIP™ is a trademark of National	Semiconductor Corporation.			·			

©1995 National Semiconductor Corporation TL/H/9057

RRD-B30M115/Printed in U. S. A.

LM6161/LM6261/LM6361 High Speed Operational Amplifier

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V⁺ - V⁻) 36V See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. Storage Temp Range -65° C to $\pm 150^{\circ}$ C

05 0 10 1 150 0
150°C
\pm 700V

Operating Ratings (Note 12)

Temperature Range (Note 2)	
LM6161	$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
LM6261	$-25^{\circ}C \le T_{J} \le +85^{\circ}C$
LM6361	$0^{\circ}C \le T_{J} \le +70^{\circ}C$
Supply Voltage Range	4.75V to 32V

DC Electrical Characteristics

Differential Input Voltage (Note 8)

Output Short Circuit to GND (Note 1)

Common-Mode Voltage Range

(Note 10)

Soldering Information Dual-In-Line Package (N, J)

Soldering (10 sec.) Small Outline Package (M) Vapor Phase (60 sec.)

Infrared (15 sec.)

The following specifications apply for Supply Voltage = $\pm 15V$, $V_{CM} = 0$, $R_L \ge 100 \text{ k}\Omega$ and $R_S = 50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25^{\circ}C$.

 $\pm 8V$

260°C

215°C

220°C

Continuous

 $(V^+ - 0.7V)$ to $(V^- + 0.7V)$

		er Conditions	Тур	LM6161	LM6261	LM6361	Units
Symbol	Parameter			Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
V _{OS}	Input Offset Voltage		5	7 10	7 9	20 22	m∨ Ma:
V _{OS} Drift	Input Offset Voltage Average Drift		10				μV/'
Ib	Input Bias Current		2	3 6	3 5	5 6	μA Ma:
I _{OS}	Input Offset Current		150	350 800	350 600	1500 1900	nA Ma
l _{OS} Drift	Input Offset Current Average Drift		0.4				nA/'
R _{IN}	Input Resistance	Differential	325				kΩ
C _{IN}	Input Capacitance	A _V = +1 @ 10 MHz	1.5				pF
A _{VOL} Large Signal Voltage Gain	$V_{OUT} = \pm 10V,$ $R_L = 2 k\Omega$ (Note 9)	750	550 300	550 400	400 350	V/\ Mir	
		$R_L = 10 k\Omega$ (Note 9)	2900				V/Y
V _{CM} Input Common-Mode Voltage Range	de Supply = $\pm 15V$	+ 14.0	+ 13.9 + 13.8	+ 13.9 + 13.8	+ 13.8 + 13.7	Vol Mir	
		-13.2	12.9 12.7	-12.9 - 12.7	−12.8 − 12.7	Volt Mir	
		Supply = $+5V$ (Note 4)	4.0	3.9 3.8	3.9 3.8	3.8 3.7	Volt Mir
			1.8	2.0 2.2	2.0 2.2	2.1 2.2	Vol Ma
CMRR	Common-Mode Rejection Ratio	$-10V \leq V_{CM} \leq +10V$	94	80 74	80 76	72 70	dE Mir
PSRR	Power Supply Rejection Ratio	$\pm 10V \le V^{\pm} \le \pm 16V$	90	80 74	80 76	72 70	dE Mir
V _O	Output Voltage Swing	Supply = $\pm 15V$ and R _L = 2 k Ω	+14.2	+ 13.5 + 13.3	+ 13.5 + 13.3	+ 13.4 + 13.3	Vol Mir
			-13.4	13.0 12.7	- 13.0 - 12.8	- 12.9 - 12.8	Volt Mir

DC Electrical Characteristics (Continued)

The following specifications apply for Supply Voltage = $\pm 15V$, $V_{CM} = 0$, $R_L \ge 100 \text{ k}\Omega$ and $R_S = 50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25^{\circ}C$.

Symbol	Parameter	Conditions	Тур	LM6161	LM6261	LM6361	
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	Units
V _O (Continued)	Output Voltage Swing (Continued)	Supply = $+5V$ and R _L = 2 k Ω (Note 4)	4.2	3.5 3.3	3.5 3.3	3.4 3.3	Volts Min
			1.3	1.7 2.0	1.7 1.9	1.8 1.9	Volts Max
	Output Short Circuit Current	Source	65	30 20	30 25	30 25	mA Min
		Sink	65	30 20	30 25	30 25	mA Min
I _S	Supply Current		5.0	6.5 6.8	6.5 6.7	6.8 6.9	mA Max

AC Electrical Characteristics

The following specifications apply for Supply Voltage = $\pm 15V$, V_{CM} = 0, R_L $\geq 100 \text{ k}\Omega$ and R_S = 50 Ω unless otherwise noted. **Boldface** limits apply for T_J = T_{MIN} to T_{MAX}; all other limits T_J = 25°C.

				LM6161	LM6261	LM6361	
Symbol	Parameter	Conditions	Тур	Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	Units
GBW	Gain-Bandwidth Product	@ f = 20 MHz	50	40 30	40 35	35 32	MHz Min
		Supply = $\pm 5V$	35				MHz
SR	Slew Rate	A _V = +1 (Note 8)	300	200 180	200 180	200 180	V/μs Min
		Supply = $\pm 5V$ (Note 8)	200				V/µs
PBW	Power Bandwidth	$V_{OUT} = 20 V_{PP}$	4.5				MHz
ts	Settling Time	10V Step to 0.1% A _V = -1 , R _L = 2 k Ω	120				ns
φm	Phase Margin		45				Deg
AD	Differential Gain	NTSC, $A_V = +4$	< 0.1				%
φD	Differential Phase	NTSC, $A_V = +4$	0.1				Deg
e _{np-p}	Input Noise Voltage	f = 10 kHz	15				nV/√Hz
i _{np-p}	Input Noise Current	f = 10 kHz	1.5				pA/√Hz

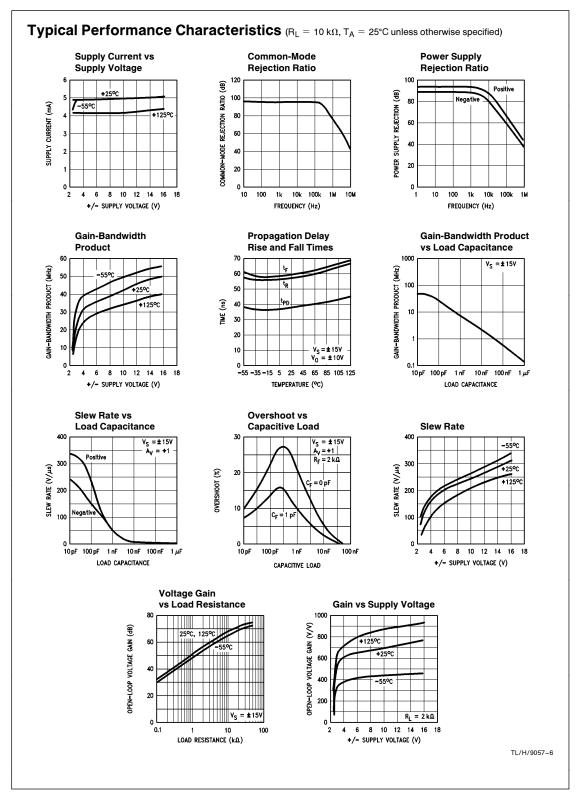
Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/W, the molded plastic SO (M) package is 155°C/W, and the cerdip (J) package is 125°C/W. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: Limits are guaranteed by testing or correlation.

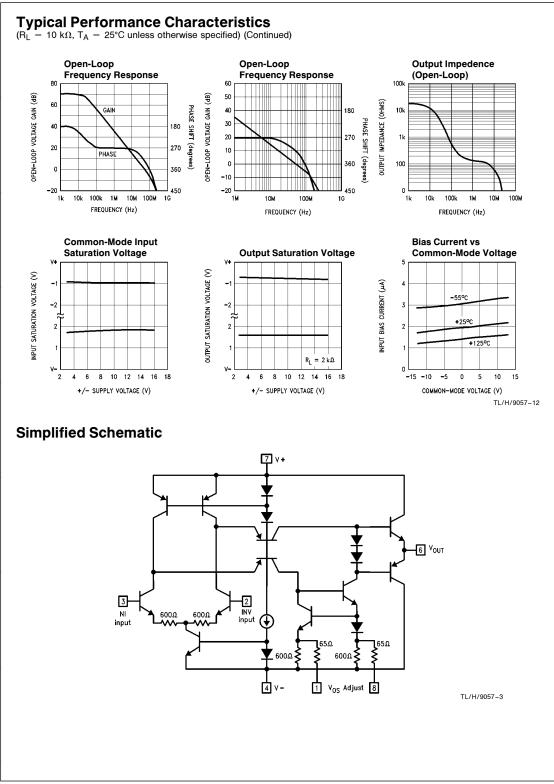
Note 4: For single supply operation, the following conditions apply: $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (Vos Adjust) are each connected to Pin 4 (V^-) to realize maximum output swing. This connection will degrade V_{OS} , V_{OS} Drift, and Input Voltage Noise. Note 5: $C_L \le 5 \text{ pF}$.

Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, los, and Noise).

Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.


Note 8: V_{IN} = 8V step. For supply = $\pm 5V$, V_{IN} = 5V step.


Note 9: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.


Note 10: The voltage between V $^+$ and either input pin must not exceed 36V.

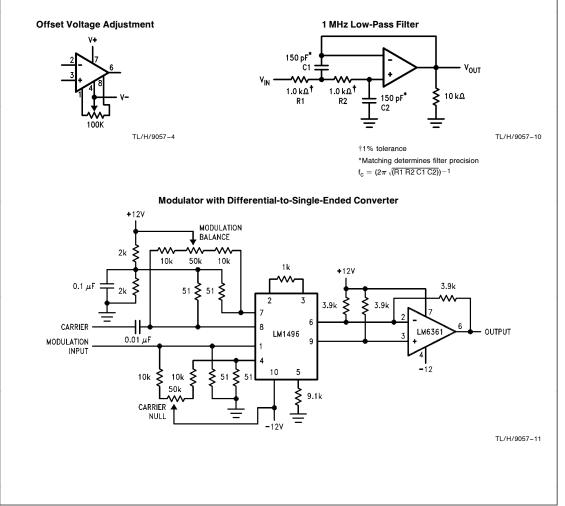
Note 11: A military RETS electrical test specification is available on request. At the time of printing, the RETS6161X specs complied with all **Boldface** limits in this column.

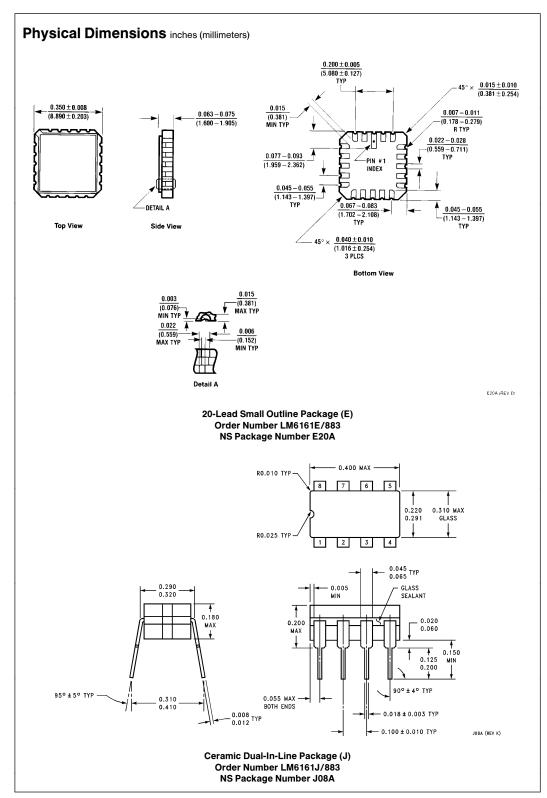
Note 12: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

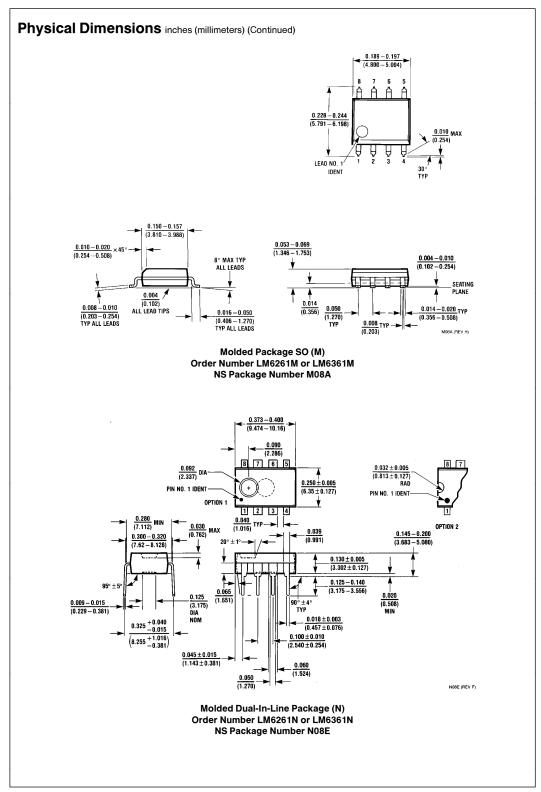
Applications Tips

The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the op amp's input stage, the openloop gain was reduced as the stability increased. Gain error due to reduced A_{VOL} is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364 should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation.

The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability.

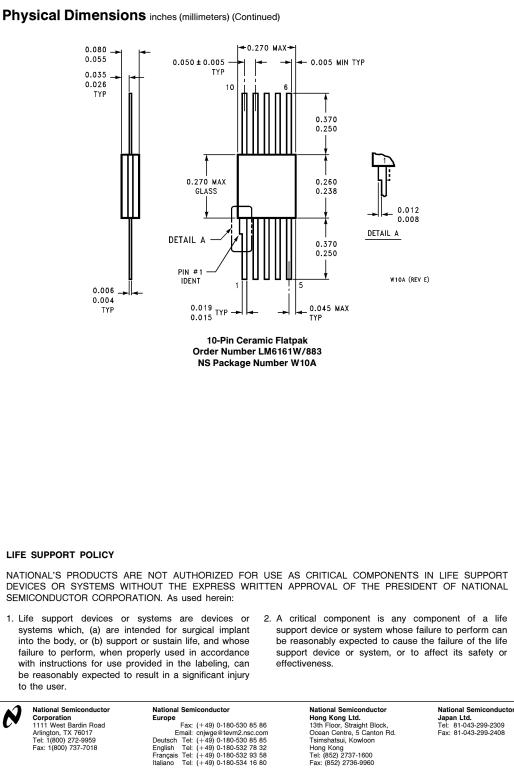

Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will,


Typical Applications


however, improve the stability and transient response and is recommended for every design. 0.01 μ F to 0.1 μ F ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2 μ F to 10 μ F of tantalum may provide extra noise reduction.

Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling across adjacent nodes and can cause gain to unintentionally vary with frequency.

Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.



0

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.