
DESCRIPTION

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available

PIN CONFIGURATIONS

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE592N14	0405B
14-Pin Small Outline (SO) package	0 to +70°C	NE592D14	0175D
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE592N8	0404B
8-Pin Small Outline (SO) package	0 to +70°C	NE592D8	0174C

NOTES:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

T_A=+25°C, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	±8	V
V _{IN}	Differential input voltage	±5	V
V _{CM}	Common-mode input voltage	±6	V
I _{OUT}	Output current	10	mA
T _A	Operating ambient temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C
P _{D MAX}	Maximum power dissipation,		
	T _A =25°C (still air) ¹		
	D-14 package	0.98	W
	D-8 package	0.79	W
	N-14 package	1.44	W
	N-8 package	1.17	W

NOTES:

N-8 package at 9.3mW/°C

^{1.} Derate above 25°C at the following rates:
D-14 package at 7.8mW/°C
D-8 package at 6.3mW/°C
N-14 package at 11.5mW/°C

DC ELECTRICAL CHARACTERISTICS

 $T_A=+25^{\circ}C\ V_{SS}=\pm6V,\ V_{CM}=0,\ unless\ otherwise\ specified.$ Recommended operating supply voltages $V_S=\pm6.0V.$ All specifications apply to both standard and high gain parts unless noted differently.

CVMDOL	DADAMETER	TEST CONDITIONS	NE592	LINUT		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain,					
	standard part					
	Gain 1 ¹	$R_L=2k\Omega$, $V_{OUT}=3V_{P-P}$	250	400	600	V/V
	Gain 2 ^{2, 4}		80	100	120	V/V
R _{IN}	Input resistance					
	Gain 1 ¹			4.0		kΩ
	Gain 2 ^{2, 4}		10	30		kΩ
C _{IN}	Input capacitance ²	Gain 2 ⁴		2.0		pF
I _{OS}	Input offset current			0.4	5.0	μА
I _{BIAS}	Input bias current			9.0	30	μΑ
V _{NOISE}	Input noise voltage	BW 1kHz to 10MHz		12		μV_{RMS}
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	60	86		dB
	Gain 2 ⁴	V _{CM} ±1V, f=5MHz		60		dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	$\Delta V_S = \pm 0.5 V$	50	70		dB
V _{OS}	Output offset voltage					
	Gain 1	R _L =∞			1.5	V
	Gain 2 ⁴	R _L =∞			1.5	V
	Gain 3 ³	R _L =∞		0.35	0.75	V
V_{CM}	Output common-mode voltage	R _L =∞	2.4	2.9	3.4	V
V _{OUT}	Output voltage swing	$R_L=2k\Omega$	3.0	4.0		V
	differential					
R _{OUT}	Output resistance			20		Ω
I _{CC}	Power supply current	R _L =∞		18	24	mA

- NOTES:

 1. Gain select Pins G_{1A} and G_{1B} connected together.

 2. Gain select Pins G_{2A} and G_{2B} connected together.

 3. All gain select pins open.

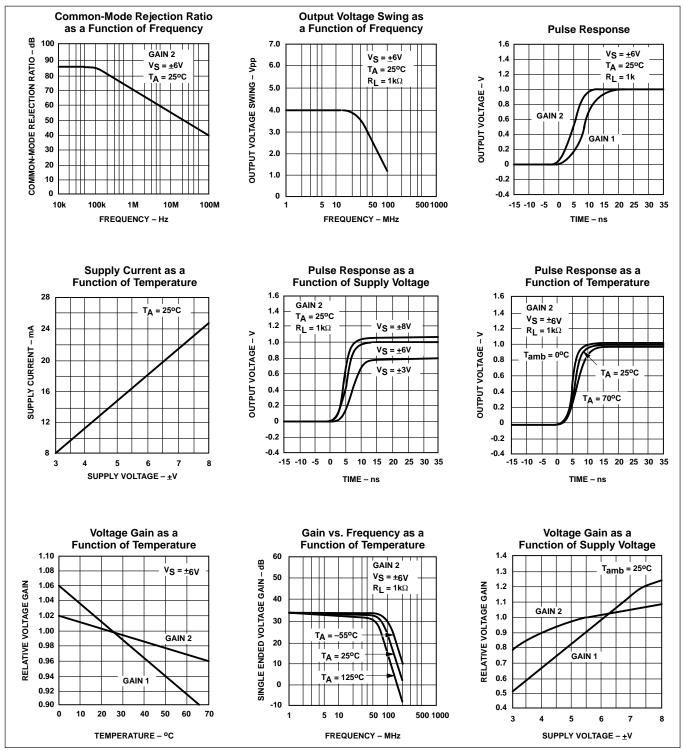
 4. Applies to 14-pin version only.

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics $V_{SS}=\pm6V$, $V_{CM}=0$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified. Recommended operating supply voltages $V_S=\pm6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

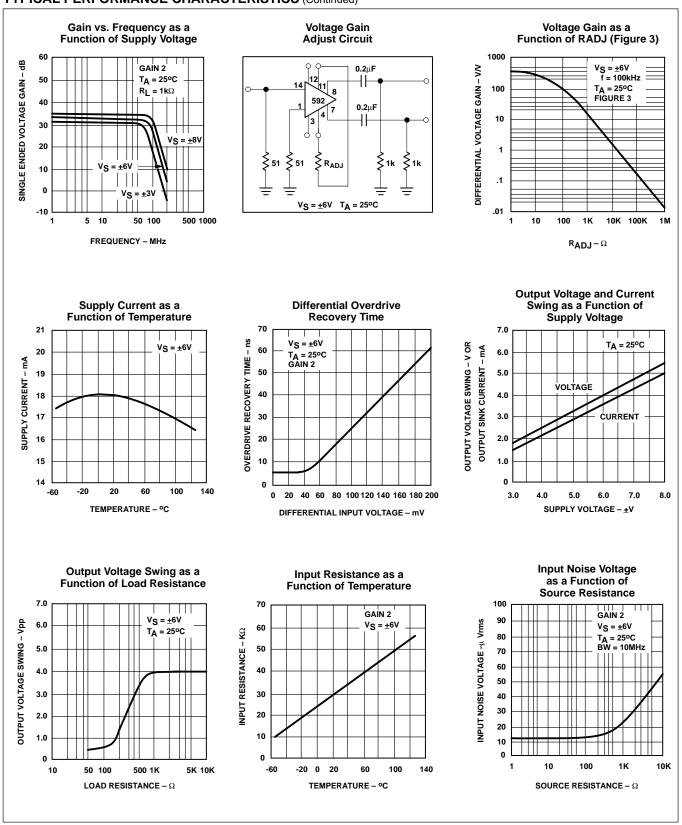
CVMDOL	DADAMETED	TEST CONDITIONS	NE592			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
A _{VOL}	Differential voltage gain,					
	standard part					
	Gain 1 ¹	$R_L=2k\Omega$, $V_{OUT}=3V_{P-P}$	250		600	V/V
	Gain 2 ^{2, 4}		80		120	V/V
R _{IN}	Input resistance					
	Gain 2 ^{2, 4}		8.0			kΩ
I _{OS}	Input offset current				6.0	μА
I _{BIAS}	Input bias current				40	μА
V _{IN}	Input voltage range		±1.0			V
CMRR	Common-mode rejection ratio					
	Gain 2 ⁴	V _{CM} ±1V, f<100kHz	50			dB
PSRR	Supply voltage rejection ratio					
	Gain 2 ⁴	$\Delta V_S = \pm 0.5 V$	50			dB
V _{OS}	Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³	R _L =∞			1.5 1.5 1.0	V
V _{OUT}	Output voltage swing differential	$R_L=2k\Omega$	2.8			V
I _{CC}	Power supply current	R _L =∞			27	mA

- Gain select Pins G_{1A} and G_{1B} connected together.
 Gain select Pins G_{2A} and G_{2B} connected together.
 All gain select pins open.
 Applies to 14-pin versions only.

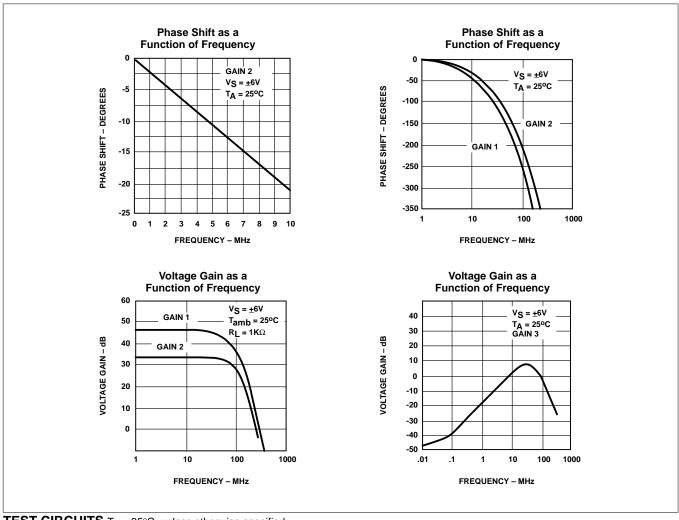

AC ELECTRICAL CHARACTERISTICS

T_A=+25°C V_{SS}=±6V, V_{CM}=0, unless otherwise specified. Recommended operating supply voltages V_S=±6.0V. All specifications apply to both standard and high gain parts unless noted differently.

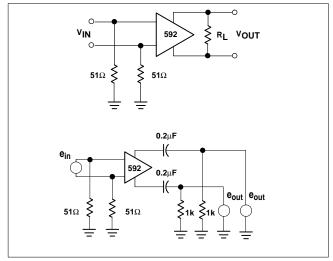
SYMBOL	PARAMETER	TEST CONDITIONS		NE/SA592		UNIT
			Min	Тур	Max	
BW	Bandwidth Gain 1 ¹ Gain 2 ^{2, 4}			40 90		MHz MHz
t _R	Rise time Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} =1V _{P-P}		10.5 4.5	12	ns ns
t _{PD}	Propagation delay Gain 1 ¹ Gain 2 ^{2, 4}	V _{OUT} =1V _{P-P}		7.5 6.0	10	ns ns

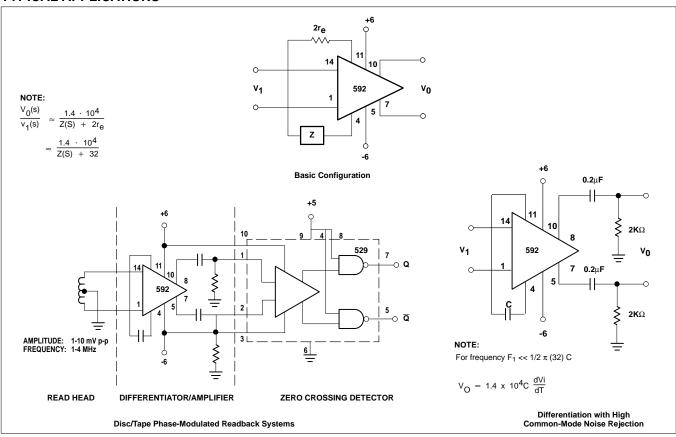

- Gain select Pins G_{1A} and G_{1B} connected together.
 Gain select Pins G_{2A} and G_{2B} connected together.
 All gain select pins open.
- 4. Applies to 14-pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS



April 15, 1992 254


TYPICAL PERFORMANCE CHARACTERISTICS (Continued)


April 15, 1992 255

TEST CIRCUITS T_A = 25°C, unless otherwise specified.

TYPICAL APPLICATIONS

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V ₀ (s) TRANSFER V ₁ (s) FUNCTION
0— R L C	LOW PASS	$\frac{1.4 \times 10^4}{L} \qquad \left[\frac{1}{s + R/L}\right]$
R C	HIGH PASS	$\frac{1.4 \times 10^4}{R} \qquad \left[\frac{s}{s + 1/RC} \right]$
∞ R L C C C C C C C C C C C C C C C C C C	BAND PASS	$\frac{1.4 \times 10^4}{L} \qquad \left[\frac{s}{s^2 + R/Ls + 1/LC} \right]$
□	BAND REJECT	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$

NOTES:

In the networks above, the R value used is assumed to include $2r_{\mbox{e}}$, or approximately 32Ω .

 $S = j\omega$ $\omega = 2\pi f$

April 15, 1992 257

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.