
8-bit
RISC
Microcontoller

Application
Note

Rev. 2505A–AVR–02/02
AVR130: Setup and Use the AVR® Timers

Features
• Description of Timer/Counter Events
• Timer/Counter Event Notification
• Clock Options
• Example Code for Timer0

– Overflow Interrupt
• Example Code for Timer1

– Input Capture Interrupt
• Example Code for Timer2

– Asynchronous Operation
– Compare Match Interrupt

• PWM Basics
• Example Code for PWM Operation of Timer2

Introduction
This application note describes how to use the different timers of the AVR. The
AT90S8535 is used as an example. The intention of this document is to give a general
overview of the timers, show their possibilities and explain how to configure them. The
code examples will make this clearer and can be used as guidance for other
applications.

Starting from a general overview of the timers, several examples will show how the
timers work and how they are configured. Experienced users can start directly with the
section “Setting Up the Timers” on page 7. The last section is a short description of
the PWM mode.

Additional information can be found in the data sheets and in application notes where
the timers are used.

General Description
In principle, a timer is a simple counter. Its advantage is that the input clock and oper-
ation of the timer is independent of the program execution. The deterministic clock
makes it possible to measure time by counting the elapsed cycles and take the input
frequency of the timer into account.

Why Different Timers
The answer is quite simple: To have the right timer for the right application and to have
enough resources to do this.

Generally, the 90S- and megaAVRs have two 8-bit and one 16-bit timer. A timer with
16-bit resolution is certainly more flexible to use than one with 8-bit resolution. How-
ever, the saying “bigger is better” does not necessarily apply to the microcontroller
world. For many applications, it is sufficient to have 8-bit resolution. Using a higher
resolution means a larger program overhead, which costs processing time and should
be avoided in speed optimized code. It also means higher device cost.
1

Because of the flexibility of the AVR timers, they can be used for different purposes. The
number of timers determines the amount of independent configurations. In the following,
the different configuration options will be described more closely.

Timer Events The timer of the AVR can be specified to monitor several events. Status flags in the
TIMSK register show if an event has occurred. The AT90S8535 can be configured to
monitor up to three events per timer.

Timer Overflow A timer overflow means that the counter has counted up to its maximum value and is
reset to zero in the next timer clock cycle. The resolution of the timer determines the
maximum value of that timer. There are two timers with 8-bit resolution and one timer
with 16-bit resolution on the AT90S8535. The maximum value a timer can count to can
be calculated by Equation 1. Res is here the resolution in bits.

The timer overflow event causes the Timer Overflow Flag (TOVx) to be set in the Timer
Interrupt Flag Register (TIFR).

Compare Match In cases where it is not sufficient to monitor a timer overflow, the compare match inter-
rupt can be used. The Output Compare Register (OCRx) can be loaded with a value
[0 .. MaxVal] which the timer will be checked against every timer cycle. When the timer
reaches the compare value, the corresponding Output Compare Flag (OCFx) in the
TIFR register is set. The Timer can be configured to clear the count register to “0” on a
compare match.

Related output pins can be configured to be set, cleared or toggled automatically on a
compare match. This feature is very useful to generate square wave signals of different
frequencies. It offers a wide range of possibilities which makes it possible to implement
a DAC. The PWM mode is a special mode which is even better suited for wave genera-
tion. See the “PWM Basics” on page 14, the data book or [3] for details.

Input Capture The AVR has an input pin to trigger the input capture event. A signal change at this pin
causes the timer value to be read and saved in the Input Capture Register (ICRx). At the
same time the Input Capture Flag (ICFx) in the TIFR will be set. This is useful to mea-
sure the width of external pulses.

Timer Event Notification The timer operates independently of the program execution. For each timer event there
is a corresponding status flag in the Timer Interrupt Flag Register (TIFR). The occur-
rence of timer events require a notification of the processor to trigger the execution of
corresponding actions. This is done by setting the status flag of the event which
occurred.

There are three different ways to monitor timer events and react on them:

1. Constantly polling of status flags – interrupt flags and execution of corresponding
code.

2. Break of program flow and execution of Interrupt Service Routines (ISR).

3. Changing the level of output pins automatically.

Polling of Interrupt Flags This method makes use of the fact that the processor marks the timer events by setting
the corresponding interrupt flags. The main program can frequently check the status of
these flags to see if one of these events occurred. This requires some program over-

MaxVal 2Res 1–= 1()
2 AVR130
2505A–AVR–02/02

AVR130
head, which will cost additional processing time. The advantage of this solution is the
very short response time when tight loops are used.

The assembler implementation for the Timer0 can look like the following code example.
This three code lines have to be located in the main loop so that they are executed
frequently.

loop: ; label

in r16,TIFR ; load TIFR in register 16

sbrs r16,TOV0 ; skip next instruction if bit (zero) in register
; (r16) is set

rjmp loop ; jump to loop if no Timer0 overflow occurred
; Event Service Code starts here

Interrupt Controlled
Notification

The AVR can be configured to execute interrupts if a timer event has occurred (the cor-
responding interrupt flag in the TIFR is set). Normal program execution will be
interrupted (almost) immediately and the processor will execute the code of the Interrupt
Service Routine. The advantage compared to polling of interrupt flags is zero overhead
in the main loop. This saves processing time. The section “Setting Up the Timers” on
page 7 shows a few examples of how this can be implemented.

Timer interrupts are enabled by setting the corresponding bit in the Timer Interrupt Mask
Register (TIMSK). The following example shows how to enable the Output Compare
Interrupt of Timer2:

ldi r16,1<<OCIE2

out TIMSK,r16 ; Enable timer output compare interrupt

sei ; Enable global interrupts

Automatic Reaction on Events Timer1 and Timer2 support the possibility to react on timer interrupt events on a purely
hardware basis without the need to execute code. Related output pins can be config-
ured to be set, cleared or toggled automatically on a compare match. In contrast to the
two other solutions this happens in parallel to normal code execution and requires no
processing time.

The following code example shows how to set the compare value and enable pin tog-
gling. In general the set up of the pin-action is done by configuring the two bits COMx0
and COMx1 in TCCRx. The configuration of Timer2 can look like this:

ldi r16,(1<<COM20)|(1<<CS20)

out TCCR2,r16 ; OC2 toggling on compare match/timer
; clock = system clock

ldi r16,32

out OCR2,r16 ; Set output compare value to 32

To enable pin toggling, the data direction register bit corresponding to OCx has to be set
to make it an output pin.

Clock Options The clock unit of the AVR timers consists of a prescaler connected to a multiplexer. A
prescaler can be described as a clock divider. Generally, it is implemented as a counter
with several output signals at different counting stages. In the case of the AT90S8535, a
10-bit counter is used to divide the input clock in four (six in case of the Timer2) different
prescaled clocks. The multiplexer is used to select which prescaled clock signal to use
as input signal for the Timer. Alternatively, the multiplexer can be used to bypass the
prescaler and configure an external pin to be used as input for the Timer.

The fact that there are two prescalers available, but three different Timers, has to be
seen in context with which clock source the prescaled value is based on. Both Timer0
and Timer1 are synchronous timers and use the system clock (CPU clock) as input
3
2505A–AVR–02/02

source. In this case there is no limitation if both use the same prescaler (as long as each
timer can be configured separately). However, the asynchronous clocked Timer2 needs
its own prescaler to be independent of the system clock.

Figure 1 shows the prescaling and the configuration unit. The data sheets contain more
detailed drawings showing all prescalers and multiplexers. An overview of the possible
clock settings is given in Table 1. In the following sections these settings will be
described more clearly.
Notes: 1. The prescaler is constantly running during operation. In cases where the timer has to

count very accurately it has to be ensured that the prescaler starts counting from
zero. On parts without prescaler reset this has to be done by detecting the prescaler
overflow by software and the initialization of the timer counter TCNTx register
afterwards.

2. On newer devices with shared prescaler, executing a prescaler reset will affect all
connected timers.

Figure 1. Prescaler

Clocking by System Clock In this case, the system clock is used as input signal for the prescaler. Even if a pres-
caled value is chosen instead of the system clock, this clock is based on the system
clock. The timer clock is therefore synchronous to the system clock.

All three timers of the AT90S8535 and most timers on other AVR parts support this
option. The advantage of this is that no additional external circuits are needed. Small
time frames can be implemented or monitored because of the high frequency of the sys-
tem clock.

The timer overflow frequency is a good indication of the size of the time frame a timer
covers. Equation 1 shows the correlation between the timer overflow frequency TOVCK,
the maximum value (MaxVal) of the timer, the system clock (CK) and the division factor
of the prescaler (PVal).

10-bit T/C Prescaler

TCKx

CSx0
CSx1
CSx2

PCKx

Tx
(0-1)

0

P
C

K
x
/8

P
C

K
x
/3

2
(2

)

P
C

K
x
/6

4

P
C

K
x
/1

28
 (2

)

P
C

K
x
/2

56

P
C

K
x
/1

02
4

(0-1) only available on Timer 0 and 1
 (2) only available on Timer 2
x [0..2]
4 AVR130
2505A–AVR–02/02

AVR130
Assume that the CPU is running with fCPU = 3.69 MHz and the resolution of the timer is 8
bit (MaxVal = 256). A prescale value of 64 will then cause the timer to be clocked with
TCK = 3.69 MHz/64 so that there will be about 225 timer overflows per second. See
Equation 2 for the correct mathematical description:

To get 225 timer overflow events per second means that every 4.4 ms an overflow
occurs. The maximum prescaler value will generate a timer overflow every 71 ms while
the minimum prescaler value generates a timer overflow every 69 µs.

In most cases a different approach will be used to determine the settings. The require-
ments of the application will specify the frequency of the timer overflows. Based on this
and the given clock frequency of the CPU together with the timer resolution the pres-
caler settings will be calculated according to Equation 3.

Table 1. Overview of the Clock Settings

TCCRx
Synchronous Timer0 &
Timer1 PCK = CK

Synchronous/Asynchronous
Timer2 PCK2 = f (AS2)Bit 2 Bit 1 Bit 0

CSx2 CSx1 CSx0 TCK0,1 TCK2

0 0 0 0 (Timer Stopped) 0 (Timer Stopped)

0 0 1 PCK (System Clock) PCK2 (System Clock/Asynchronous
Clock)

0 1 0 PCK/8 PCK2/8

0 1 1 PCK/64 PCK2/32

1 0 0 PC/256 PCK2/64

1 0 1 PCK/1024 PCK2/128

1 1 0 External Pin Tx falling edge PCK2/256

1 1 1 External Pin Tx rising edge PCK2/1024

TOVCK
fCK

MaxVal

PCKx PVal⁄()
MaxVal

PCKx

PVal MaxVal•()
---= = = 2()

TOVCK
fCK

MaxVal
-------------------- 3.69 MHz 64⁄()

256
--- ~225= = =

PVal
PCKx

TOV MaxVal•()
---= 3()
5
2505A–AVR–02/02

The assembler implementation for Timer0 can look like the following code example.
These lines set the prescaler values in the TCCR0 to a clock division factor of 1024 (see
Table 1).

ldi r16,(1<<CS02)|(1<<CS00)

out TCCR0,r16 ; Timer clock = system clock/1024

Clocking by Asynchronous
Clock

In contrast to the two other timers which do not support this option, Timer2 of the
AT90S8535 can be clocked by an asynchronous external clock. For this purpose a crys-
tal or a ceramic resonator can be connected to the on board oscillator via the pins
TOSC1 and TOSC2.

The oscillator is optimized for a watch crystal of 32.768 kHz. This frequency is well
suited for the implementation of Real Time Clocks (RTC)(1). There the main advantage
of a separate clock is shown – it is independent of the system clock. This makes it pos-
sible to run the part at a high processing frequency while the timer is clocked by an
external clock with a frequency optimized for accurate timing. Additional power save
mode support allows putting the part in sleep mode while the asynchronous timer is still
in duty.
Note: The external clock frequency should be in the interval [0 Hz .. 256 kHz] and maximum

CK/4.

Asynchronous operation requires some additional consideration. Because the clocking
of Timer2 is asynchronous, the timer events have to be synchronized by the CPU. This
requires a timer clock frequency which is at least four times lower than the system clock.
On the other hand, conflicts between the synchronous and the asynchronous access
have to be avoided. This is done by using temporary registers. Status bits signalize
when an update of the configuration registers is in process. See the description of the
Asynchronous Status Register (ASSR) in the data sheet for details.

The TOVCK is calculated according to equation 2, but by using the oscillator frequency
instead of the system clock. The settings of TCCR2 are given in Table 1. The prescaler
input clock PCK2 is a function of the AS2 bit in the ASSR register. If this bit is cleared, the
timer runs in synchronous mode with the system clock as input frequency. If this bit is
set, the asynchronous clock signal on the pins TOSC1 and TOSC2 is used as input sig-
nal of the prescaler.

The assembler implementation for Timer2 can look like the following code example.
These two lines set the prescaler values in TCCR2 to a clock division factor of 1024
(see Table 1).

ldi r16, (1<<CS22)|(1<<CS21)|(1<<CS20)

out TCCR2,r16 ; Timer clock = system clock/1024

Note: 1. AVR134: Real Time Clock (RTC) using the Asynchronous Timer

External Clocking External clocking is supported by Timer0 and Timer1 only. This mode allows the use of
a wide range of external signals as timer clock signals. This is synchronous clocking,
which means that the CPU detects the status of the pin and clocks the timer synchro-
nously to the system clock if an external clock signal was detected. On each rising edge
of the internal CPU clock the external clock signal is sampled. The CPU needs at least
two cycles to detect a pin-change, so the maximum external clock frequency is therefore
CK/2. Either the rising or the falling edge of T0/T1 can be used to indicate an external
clock event. This is selected in TCCRx, the settings of the bits CS00, CS01 and CS02
can be found in Table 1.
6 AVR130
2505A–AVR–02/02

AVR130
The assembler implementation for the Timer0 can look like the following code example.
These lines set pin T0 as input pin for the timer clock with the rising edge as the active
clock edge (see Table 1).

ldi r16,(1<<CS02)|(1<<CS01)|(1<<CS00)

out TCCR0,r16 ; Timer clock = external pin T0, rising edge

Note: It is important ensure that pin T0 is an input pin in the Data Direction Register of Port B
(DDRB). The setting of the direction register will not be overwritten by the timer setup,
because it is also allowed to implement a software clocked timer in the AVR. T0 and T1
are inputs by default.

How to Stop the Timer Stopping the timer from counting is simple. A value of zero as prescaler values in the
TCCRx stops the corresponding timer (see Table 1). Remember, however, that the
prescaler is still running.

The assembler implementation for the Timer0 can look like the following code example.
clr r16

out TCCR0,r16 ; writing zero to TCCR0 stops Timer0

Note: Other TCCRx may contain configuration bits besides the clock select (CSxx) bits. The
command lines above will clear these bits. This has to avoided if these bits were set.
That costs one extra program line, as shown below.

in r16,TCCR0 ; Load current value of TCCR0

andi r16,~((1<<CS02)|(1<<CS01)|(1<<CS00))
; Clear CS02,CS01,CS00

out TCCR0,r16 ; Writing zero to CS02, CS01, and CS00 in TCCR0 stops
; Timer0. The other bits are not affected.

Setting Up the Timers This section shows concrete examples for how to set up the three different timers. The
data sheet and the application notes listed in the “Litterature” section should be read in
addition. Especially when transforming the settings to other parts than the AT90S8535.

Using interrupts is the most common way to react on timer events. The examples which
are described in the following use interrupts.

Independent of the different features of the three timers, they all have two things in com-
mon. The timer has to be started by selecting the clock source, and if interrupts are used
they have to be enabled.

Shared Registers If the same registers are used in the interrupt service routines as in the main code, these
registers have to be saved at the beginning of the ISR and restored at the end of the
ISR. If not all 32 registers are needed in the application, the save and restore operations
can be avoided by using separate registers in the main code and the ISR.

It is also very important to remember to store the Status Register (SREG), as this is not
automatically done by the interrupt handler.

Note: The C compiler handles this automatically, while it has to be done manually by using for
instance push and pop instructions if assembly language is used.

8-bit Timer0 The 8-bit Timer0 is a synchronous Timer. This means that it is clocked by the system
clock, a prescaled system clock or an external clock which is synchronized with the sys-
tem clock (see section “Clock Options” on page 3 for details about this). This timer is the
least complex of the three. Only a few settings have to be made to get it running.
7
2505A–AVR–02/02

Example – Timer0 Overflow
Interrupt

The following example will show how the Timer0 can be used to generate Timer Over-
flow Interrupts. With every interrupt the output pins on Port B will be toggled.

To observe this, the STK500 Development Board can be used. Port B has to be con-
nected to the LEDs using the 10-pin ribbon cable. The LEDs will blink with a frequency
(fLED) that is determined by the following formula:

A system consisting of an 8-bit t imer (MaxVal = 256) and a system clock of
CK = 3.69 MHz which is divided by a prescaler value of PVal = 1024, will cause the
LEDs to blink with a frequency (fLED) of approximately 7 Hz. The following initialization
routine shows how to set up such a system:

init_Ex1:

ldi r16,(1<<CS02)|(1<<CS00)

out TCCR0,r16 ; Timer clock = system clock / 1024

ldi r16,1<<TOV0

out TIFR,r16 ; Clear TOV0/ clear pending interrupts

ldi r16,1<<TOIE0

out TIMSK,r16 ; Enable Timer/Counter0 Overflow Interrupt

ser r16

out DDRB,r16 ; Set Port B as output

ret

The corresponding C code for the IAR Compiler looks like this:
void init_Ex1(void)

{

TCCR0 = (1<<CS02)|(1<<CS00); //Timer clock =
//system clock /
//1024

TIFR = 1<<TOV0; //Clear TOV0 / clear
//pending interrupts

TIMSK = 1<<TOIE0; //Enable Timer0
//Overflow Interrupt

DDRB = 0xFF; //Set Port B as
//output

}

fLED
fCK

MaxVal
-------------------- CK PVal⁄()

2 MaxVal•
----------------------------- CK

2 PVal MaxVal•()
---= = =
8 AVR130
2505A–AVR–02/02

AVR130
In the next step, the interrupt service routine has to be implemented. This routine will be
executed with every timer overflow. Its purpose in this example is to toggle the bits of
the Port B (the LEDs).

ISR_TOV0:

push r16

in r16,SREG

push r16

in r16,PORTB ; Read Port B

com r16 ; Invert bits of r16 register

out PORTB,r16 ; Write Port B

pop r16

out SREG,r16

pop r16

reti

The corresponding C code for the IAR Compiler looks like this:
void interrupt [TIMER0_OVF0_vect] ISR_TOV0 (void)

{

PORTB = ~PORTB; // Toggle pins on Port B

}

16-bit Timer1 The 16-bit timer1 is a synchronous timer. This means that it is clocked by the system
clock, a prescaled system clock or an external clock which is synchronized with the sys-
tem clock. To ensure that the 16-bit registers of the Timer1 are written and read
simultaneously, a temporary register (Temp) is used. This makes it necessary to access
these registers in a specific order. Please see the application note “AVR072: Accessing
16-bit I/O Registers” and the data book for details. The correct way to access the regis-
ters is shown in Table 2.

According to this, a read operation of a 16-bit register can look like this:
in r16,TCNT1L

in r17,TCNT1H

A write operation to this register has to access the registers in the opposite order:
out TCNT1H,r17

out TCNT1L,r16

The C Compiler automatically handles 16-bit I/O read and write operations in the correct
order.

Table 2. Accessing 16-bit Registers

Operation 1st Access 2nd Access

Read Low Byte High Byte

Write High Byte Low Byte
9
2505A–AVR–02/02

Example – Timer Input
Capture Interrupt

This example will show the implementation of a very simple use of the input capture
event and interrupt. The port pin PD6 is the input capture pin (ICP). If the value of this
pin changes, the time between successive positive or negative edges on this pin will be
measured by Timer1. The eight most significant bits of the timer value will be written to
Port B. Again Port B has to be connected to the LEDs of the STK500, while Port D has
to be connected to the switches (using two 10-bit ribbon cables). This makes it possible
to see the timer value on the LEDs and to use the switch as the input pin for the input
capture event.

In this example, the maximum time the system should be able to detect is specified to
approximately one second (TOVCK = 1). Using Equation 3 the required clock division
factor of the prescaler can be determined. For a system clock of 3.69 MHz the prescaler
value is determined through:

The following initialization routine shows how to set up such a system:
init_Ex2:

ldi r16,(1<<CS11)|(1<<CS10)

out TCCR1B,r16 ; timer clock = system clock/64

ldi r16,1<<ICF1

out TIFR,r16 ; Clear ICF1/clear pending interrupts

ldi r16,1<<TICIE1

out TIMSK,r16 ; Timer/Counter1 Capture Event Interrupt

ser r16 ; Set all bits in register

out DDRB,r16 ; Set Port B as output

cbi DDRD,PD6 ; Set PD6/ICP as input

ret

The corresponding C code for the IAR Compiler looks like this:
void init_Ex2(void)

{

TCCR1B = (1<<CS11)|(1<<CS10); // Timer clock =
// system clock/64

TIFR = 1<<ICF1; // Clear ICF1/
// clear pending
// interrupts

TIMSK = 1<<TICIE1; // Enable Timer1
// Capture Event
// Interrupt

DDRB = 0xFF; // Set Port B as
// output

DDRD &= ~(1<<PD6); // Set PD6 as input

}

3.69 MHz

2
16

------------------------- 56 PVal� 64= = Closest Selectable Value()
10 AVR130
2505A–AVR–02/02

AVR130
In the next step, the interrupt service routine has to be implemented. This routine will be
executed with every input capture event. Its purpose in this example is to output the high
byte of Timer1 on Port B (the LEDs). Secondly the timer is reset for the next
measurement.

TIM1_CAPT:

push r16

in r16,SREG

push r16

in r16,ICR1L ; Read ICR low byte and high
; byte/ save high byte in Temp

in r16,ICR1H ; Read ICR high byte

com r16 ; Invert bits - 1 complement (see Note 1)

out PORTB,r16 ; Write ICR1H to PORTB

clr r16

out TCNT1H,r16 ; Write Temp register

out TCNT1L,r16 ; Clear the 16 bit register

pop r16

out SREG,r16

pop r16

reti

The corresponding C code for the IAR Compiler looks like this:
void interrupt [TIMER1_CAPT1_vect] ISR_ICP1(void)

{

// read high byte from Input Capture Register (read

// 16 bit value and shift it eight bits to the
// right)

PORTB = ~(ICR1>>8); // Invert Byte (see Note
// 1)and output high byte
// on Port B

TCNT1 = 0; // Reset Timer1 Count
// Register

}

Notes: 1. The inversion of the bits is necessary because of the way the LEDs are connected on
the STK500 (Low Level = LED on / High Level = LED off)

2. This implementation has one disadvantage: A timer overflow is not detected. A global
variable which is set in a timer overflow ISR can be used to avoid this. If this variable
is set, a value like 0xFF should be written to Port B instead of the timer value.
11
2505A–AVR–02/02

Asynchronous 8-bit
Timer2

Timer2 can be used in synchronous mode like Timer0 and Timer1. In addition, an asyn-
chronous mode can be used. Please see the description of the asynchronous clocking
in “Clocking by Asynchronous Clock” on page 6 or the data sheet for details.

Example – Timer Output
Compare Interrupt

This example shows how to use the timer output compare interrupt of Timer2. The timer
will be configured so that the compare match event occurs every second. This feature
could be used to implement a RTC. In this example, however, the port pins will be
inverted with every compare match event so that the connected LEDs will be blinking
with a frequency of 0.5 Hz.

Like in the previous example, Port B has to be connected to the LEDs and Port D to the
switches of the STK500. In addition, a 32.768 kHz crystal has to be mounted on the pins
TOSC1/PC6 and TOSC2/PC7 of Port C.

The timer settings can be calculated according to Equation 2. As Timer maximum value
(MaxVal) the value of the OCR2 has to be used instead. The prescaler clock (PCKx) is in
this case the clock signal of the watch crystal (fOSCCK), while TOVCK as the clock signal
for the pin change events is specified by the application to 1 second. The mathematical
description of this relation is shown by the following equation:

A prescaler value of 1024 is selected plus a corresponding OCR2 value of 32 to get the
delay time of one second between two Timer compare match events.

The following initialization routine shows how to set up such a system:
init_Ex3:

ldi r16,1<<AS2

out ASSR,r16 ; Enable asynchronous mode

; Clear timer on compare match / Timer Clock =
; system clock / 1024

ldi r16,(1<<CTC2)|(1<<CS22)|(1<<CS21)|(1<<CS20)

out TCCR2,r16 ; Timer clock = system clock/1024

ldi r16,1<<OCF2

out TIFR,r16 ; Clear OCF2/clear pending interrupts

ldi r16,1<<OCIE2

out TIMSK,r16 ; Enable timer output compare interrupt

ldi r16,32

out OCR2,r16 ; Set output compare value to 32

ser r16

out DDRB,r16 ; Set Port D as output

loop:

sbic ASSR, OCR2UB ; Wait for registers to update

rjmp loop

ret

1 TOVCK

fOSCCK

PVal OCR2•
----------------------------------- 32.768 kHz

PVal OCR2•
-----------------------------------= = =
12 AVR130
2505A–AVR–02/02

AVR130
The corresponding C code for the IAR Compiler looks like this:
void init_Ex3(void)

{

ASSR= 1<<AS2; // Enable asynchronous
// mode

// Clear timer on compare match / Timer Clock =
// system clock / 1024

TCCR2 = (1<<CTC2)|(1<<CS22)|(1<<CS21)|(1<<CS20);

TIFR= 1<<OCF2; // Clear OCF2/ Clear
// pending interrupts

TIMSK= 1<<OCIE2; // Enable Timer2 Output
// Compare Match Interrupt

OCR2= 32; // Set Output Compare
// Value to 32

DDRB= 0xFF; // Set Port B as output

while (ASSR&(1<<OCR2UB))

; // Wait for registers to update

}

In the next step the interrupt service routine has to be implemented. This routine will be
executed with every output compare event. The purpose in this example is to toggle the
bits of Port B (the LEDs).

ISR_OCIE2:

push r16

in r16,SREG

push r16

in r16,PORTB ; Read Port B

com r16 ; Invert bits of r16 register

out PORTB,r16 ; Write Port B

pop r16

out SREG,r16

pop r16

reti

The corresponding C code for the IAR Compiler looks like this:
void interrupt [TIMER2_COMP_vect] ISR_OCIE2 (void)

{

PORTB = ~PORTB; // invert bits on Port B

}

13
2505A–AVR–02/02

PWM Basics PWM is an abbreviation for Pulse Width Modulation. It is a special mode, which the
Timer1 and Timer2 can be configured to use. In this mode, the timer acts as an up/down
counter. That means that the counter counts up to its maximum value and then counts
down back to zero. This is contrary to the usual counting mode where the timer has an
overflow the cycle after reaching the maximum value. The advantage of the PWM is that
the duty cycle relation can be changed in a phase consistent way.

If the PWM is configured to toggle the Output Compare pin (OCx), the signal at this pin
can look like shown in Figure 2.

Figure 2. Output Signal of PWM

VH: Output Voltage high level

VL: Output Voltage low level

VAV: Average Output Voltage level

x: Duty cycle high level

y: Duty cycle low level

A low pass filter at the output pin combined with the relative high speed of the PWM will
cause a constant voltage level instead of a square wave signal as output signal. Equa-
tion 4 shows how this voltage level can be calculated:

with

The fact that this method allows the timer to generate voltage levels between VCC and
GND means that a DAC can be implemented using the PWM. Details about this are

t

VH

V

VL

VAV

yx

VAV
VH x VL y•+•()

x y+()
---= 4()

x OCRx 2•=

y MaxVal OCRx–() 2•=

VAV
VH OCRx VL MaxVal OCRx–()•+•()

MaxVal
---= 5()
14 AVR130
2505A–AVR–02/02

AVR130
described in the application notes “AVR314: DTMF Transmitter” and “AVR335: Digital
Sound Recorder with AVR and Serial DataFlash”.

Example – Timer2 as 8-bit
PWM

This example shows how to generate voltages between VCC and GND at the output pin
of the PWM (PD7/OC2). To observe this, Port D should be connected to the LEDs using
one of the 10-pin ribbon cables.

Port D is configured the way that the LEDs connected to the low nibble will be switched
on while the LEDs connected to the high nibble will be switched off. Only the LED on
PD7 / OC2 will not be switched off nor will it be switched on but shine with a low bright-
ness. This LED is connected to the output pin of the PWM whichs output signal has a
duty relation of 1/8 to 7/8 (OCR2 = 0xE0).
Note: The duty cycle ratio for this configuration is inverted because of the way the LEDs are

connected on the STK500.

The following initialization routine shows how to set up such a system:
init_Ex4:

; 8 bit PWM non-inverted (Fck/510)

ldi r16,(1<<PWM2)|(1<<COM21)|(1<<CS20)

out TCCR2,r16 ; 8 bit PWM non-inverted (Fck/510)

ldi r16,0xE0

out OCR2,r16 ; Set compare value/duty cycle ratio

ldi r16,0x8F

out DDRD,r16 ; Set PD7/OC2 and low nibble Port D as output

ret

The corresponding C code for the IAR Compiler looks like this:
void init_Ex4(void)

{

// Enable non inverting 8Bit PWM /
// Timer Clock = system clock / 1

TCCR2 = (1<<COM21)+(1<<PWM2)+(1<<CS20);

DDRD = (1 << PD7)|0x0F; // PD7 (OC2) and PD0
// -PD3 as outputs

OCR2= 0xE0; // Set compare
// value/duty
// cycle ratio

}

Literature 1. AVR072: Accessing 16-bit I/O Registers

2. AVR134: Real Time Clock (RTC) using the Asynchronous Timer

3. AVR314: DTMF Transmitter

4. AVR335: Digital Sound Recorder with AVR and Serial DataFlash
15
2505A–AVR–02/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2505A–AVR–02/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	General Description
	Why Different Timers
	Timer Events
	Timer Overflow
	Compare Match
	Input Capture

	Timer Event Notification
	Polling of Interrupt Flags
	Interrupt Controlled Notification
	Automatic Reaction on Events

	Clock Options
	Clocking by System Clock
	Clocking by Asynchronous Clock
	External Clocking
	How to Stop the Timer

	Setting Up the Timers
	Shared Registers
	8-bit Timer0
	Example – Timer0 Overflow Interrupt

	16-bit Timer1
	Example – Timer Input Capture Interrupt

	Asynchronous 8-bit Timer2
	Example – Timer Output Compare Interrupt

	PWM Basics
	Example – Timer2 as 8-bit PWM
	Literature

