
 

AVR053: Calibration of the internal RC oscillator 

Features 
• Calibration using STK500, AVRISP, JTAGICE or JTAGICE mkII 
• Calibration using 3rd party programmers 
• Adjustable RC frequency with +/-1% accuracy 
• Tune RC oscillator at any operating voltage and temperature 
• Tune RC oscillator to any frequency within specification 
• Support for all AVRs with tunable RC oscillator 
• Selectable calibration clock frequency 

Introduction  
This application note describes a fast and accurate method to calibrate the internal 
RC oscillator. It offers an easily adaptable calibration firmware source code, which 
can be used with any AVR with internal tunable RC oscillator. This firmware allows 
device calibration using the AVR tools STK500, AVRISP or JTAGICE, but can also 
be used for 3rd party calibration systems, e.g. based on production programmers. 

The majority of the present AVR microcontrollers offer the possibility to run from an 
internal RC oscillator. The internal RC oscillator frequency can in most AVRs be 
calibrated to within +/-1% of the frequency specified in the datasheet for the device. 
This feature offers great flexibility and significant cost savings compared to using 
an external oscillator.  

The calibration performed in the Atmel factory is made at a fixed operating voltage 
and temperature (25°C, typically 5V). As the frequency of the internal RC oscillator 
is affected by both operating voltage and temperature, it may be desired to perform 
a secondary calibration, which matches the specific application environment. This 
secondary calibration can be performed to gain higher accuracy than the standard 
calibration offers, to match a specific operating voltage or temperature, or even to 
tune the oscillator to a different frequency. 

The calibration method described in this application note only takes a fraction of a 
second longer than reading the factory calibration byte from the signature row and 
writing it back to the to the device memory. Thus, the overall programming time is 
almost unaffected when performing calibration in the programming step in 
production.  

Note that in some systems it may be more beneficial to perform run-time calibration 
of the oscillator. That may de desirable in applications that needs an accurate 
system clock over the entire temperature range and independent of operating 
voltage. In that case a watch crystal may offer a reliable and cost efficient solution. 
Runtime calibration is however not covered by the scope of this application note. 

A Quick Start Guide is found last in this document. 
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Theory of operation – the internal RC oscillator 
In production the internal RC is calibrated at either 5V or 3.3V. Refer to the datasheet 
of the individual devices for information about the operating voltage used during 
calibration. The accuracy of the factory calibration is within +/-3 or +/-10% (refer to the 
datasheet). If a design’s need for accuracy is beyond what can be offered by the 
standard calibration in factory by Atmel, it is possible to perform a secondary 
calibration of the RC oscillator. By doing this it is possible to obtain a frequency 
accuracy within +/-1 (+/-2% for those with an 10% accuracy from factory calibration). 
A secondary calibration can thus be performed to improve or tailor the accuracy or 
frequency of the oscillator. 

Clock selection The AVR fuse settings control the system clock source being used. To use the 
internal RC oscillator, the corresponding fuse setting must be selected. An overview 
of the fuses is available in the datasheets. 

Base-frequency The following sections provide an overview of the internal RC oscillators available in 
the AVR microcontrollers. 

Some AVRs have one RC oscillator, while others have up to 4 different RC oscillators 
to choose from. The frequency ranges from 1MHz to 9.6MHz. To make the internal 
RC oscillator sufficiently accurate an Oscillator Calibration register, OSCCAL, is 
present in the AVR IO file. The OSCCAL register is one byte wide. The purpose of 
this register is to be able to tune the oscillator frequency. This tuning is utilized when 
calibrating the RC oscillator.  

When a device is calibrated by Atmel the calibration byte is stored in the Signature 
Row of the device. The calibration byte can vary from one device to the other, as the 
RC oscillator frequency is process dependent. If a device has more than one 
oscillator a calibration byte for each of the RC oscillators is stored in the Signature 
Row.  

The default RC oscillator calibration byte is in most devices automatically loaded from 
the Signature Row and copied into the OSCCAL register at start-up. For example, the 
default ATmega8 clock setting is the internal 1MHz RC oscillator; for this device the 
calibration byte corresponding to the 1MHz RC oscillator is automatically loaded at 
start-up. If the fuses are altered so that the 4MHz oscillator is used instead of the 
default setting, the calibration byte must be loaded into the OSCCAL register 
manually. A programming tool can be used to read the 4MHz calibration byte from the 
Signature Row and hence store it in a Flash or EEPROM location, which is read by 
the main program and copied into OSCCAL at run-time. 

In addition to the oscillator tuning using the OSCCAL register, some devices feature a 
system clock prescaler. The prescaler register (CLKPR) can be used to scale the 
system clock with predefined twos complement factors. Also, this prescaler can be 
preset through the AVR fuses; programming the CKDIV8 fuse will set the CLKPR to 
divide the system clock by 8. This can be done to ensure that the device is operated 
below a maximum frequency specification. The CLKPR can be modified at run-time to 
change the frequency of the system clock internally. 

The base frequency of an oscillator is defined as the unscaled oscillator frequency.  

RC Oscillator overview Different RC oscillators have been utilized in the AVR microcontrollers throughout the 
history. An overview of the devices and their RC oscillators is seen in Table 1. The 
device list is sorted by oscillator type, which is also more or less equivalent to sorting 
them by release date. Only devices with tunable oscillators are listed in the table. 
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Table 1. Oscillator frequencies and features of devices with internal RC oscillator(s). 
Grouped by oscillator version. 

Oscillator 
version 

Device RC oscillator frequency 
[MHz] 

CKDIV PRSCK 

1.1 ATtiny12 1.2 - - 
1.2 ATtiny15 1.6 - - 
2.0 ATmega163 1.0 - - 
2.0 ATmega323 1.0 - - 
3.0 ATmega8 1.0, 2.0, 4.0, and 8.0 - - 
3.0 ATmega16 1.0, 2.0, 4.0, and 8.0 - - 
3.0 ATmega32 1.0, 2.0, 4.0, and 8.0 - - 
3.1 ATmega64 1.0, 2.0, 4.0, and 8.0 - XDIV (1) 
3.1 ATmega128 1.0, 2.0, 4.0, and 8.0 - XDIV (1) 
3.0 ATmega8515 1.0, 2.0, 4.0, and 8.0 - - 
3.0 ATmega8535 1.0, 2.0, 4.0, and 8.0 - - 
3.0 ATtiny26 1.0, 2.0, 4.0, and 8.0 - - 
4.0 ATmega162 8.0 Yes Yes 
4.0 ATmega169 8.0 Yes Yes 
4.0 ATmega165 8.0 Yes Yes 
4.1 ATtiny13 4.8 and 9.6 Yes Yes 
4.2 ATtiny2313 4.0 and 8.0 Yes Yes 
5.0 ATmega48, 

ATmega88, 
ATmega168 

8.0 Yes Yes 

5.0 ATtiny25, 
ATtiny45, 
ATtiny85 

8.0 Yes Yes 

5.0 ATmega325, 
ATmega3250, 
Atmega645, 

Atmega6450,  

8.0 Yes Yes 

5.0 ATmega329, 
ATmega3290, 
Atmega649, 

Atmega6490,  

8.0 Yes Yes 

5.0 AT90CAN128 8.0 Yes Yes 
5.0 AT90PWM2,  

AT90PWM3 
8.0 Yes Yes 

Note: 1. The prescaler register is in these devices named XDIV. 

This version is the earliest internal RC for AVR that can be calibrated. It is offered 
with frequencies ranging from 1.2MHz to 1.6MHz. The calibration byte is stored in the 
Signature Row, but isn’t automatically loaded at start-up. The loading of the OSCCAL 
register must be handled at run-time by the firmware. The oscillator frequency is 
highly dependent on operating voltage and temperature in this version. 

Version 1.x oscillators 

This oscillator is offered with a frequency of 1MHz. The dependency between the 
oscillator frequency and operating voltage and temperature is reduced significantly 
compared to version 1.x. 

Version 2.x oscillators 

2555E-AVR-03/05 



  

 

4 AVR053  
2555E-AVR-03/05 

 

This version was introduced along with the first devices produced in the 35.5k 
process.  

Version 3.x oscillators 

The oscillator system is expanded to offer multiple oscillator frequencies. Four 
different RC oscillators with the frequencies 1, 2, 4, and 8MHz are present in the 
device. This version features automatic loading of the 1MHz calibration byte from the 
Signature Row. Due to the fact that 4 different RC oscillators are present, 4 different 
calibration bytes are stored in the Signature Row. If frequencies other than the default 
1MHz are desired, the OSCCAL register should be loaded with the corresponding 
calibration byte at run-time. 

A single oscillator frequency of 8MHz is offered in version 4.0. For later 4.x versions, 
two frequencies are offered: 4 and 8MHz for ATtiny2313, and 4.8 and 9.6MHz for the 
ATtiny13. The OSCCAL register is changed so that only 7 bits are used to tune the 
frequency for the selected oscillator. The MSB is not used. Auto loading of the default 
calibration value and system clock prescaler is present. 

Version 4.x oscillators 

A single oscillator frequency of 8MHz is offered in version 5.0 All 8 bits in the 
OSCCAL register are used to tune the oscillator frequency. Auto loading of the default 
calibration value and system clock prescaler is present. The OSCCAL register is split 
in two parts. The MSB of OSCCAL selects one of two overlapping frequency ranges, 
while the 7 least significant bits are used to tune the frequency within this range. 

Version 5.x oscillators 

Oscillator 
characteristics 

The frequency of the internal RC oscillator is depending on the temperature and 
operating voltage. An example of this dependency is seen in Figure 1, which shows 
the frequency of the 8MHz RC oscillator of the ATmega169. As seen from the figure, 
the frequency increases with increasing temperature, and decreases slightly with 
increasing operating voltage. These characteristics will vary from device to device. 
For details on a specific device refer to its datasheet. 

Figure 1. Oscillator frequency and influence by temperature and operating voltage. 
ATmega169 calibrated 8MHz RC oscillator frequency vs. Vcc. 
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All devices with tunable oscillators have an OSCCAL register for tuning the oscillator 
frequency. An increasing value in OSCCAL will result in a “pseudo-monotone” 
increase in frequency. The reason for calling it pseudo-monotone is that for some 
unity increases of the OSCCAL value the frequency will not increase or will decrease 
slightly. However, the next unity increase will always increase the frequency again. In 
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other words, incrementing the OSCCAL register by one may not increase the 
frequency, but increasing the OSCCAL value by two will always increase the 
frequency. This information is very relevant when searching for the best calibration 
value to fit a given frequency. An example of the pseudo-monotone relation between 
the OSCCAL value and the oscillator frequency can be seen in Figure 2, which is the 
8MHz RC oscillator of ATmega169. Note that since the OSCCAL register only uses 7 
bits for tuning the oscillator in ATmega169, the maximum frequency is corresponding 
to OSCCAL = 128. 

Figure 2. ATmega169 calibrated RC oscillator frequency as a function of the 
OSCCAL value. 
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For all tunable oscillators it is important to notice that it is not recommended to tune 
the oscillator more than 10% off the base frequency specified in the datasheet(1). The 
reason for this is that the internal timing in the device is dependent on the RC-
oscillator frequency. 

Knowing the fundamental characteristics of the RC oscillators, it is possible to make 
an efficient calibration routine that calibrates the RC oscillator to a given frequency, 
within 10% of the base frequency, at any operating voltage and at any temperature 
with an accuracy of +/-1%. 

Implementation of the calibration 
This section is divided into a description of the calibration protocol and a description 
of the firmware. The protocol can be adapted into any test or programming tool to 
support calibration. The AVR tools STK500, AVRISP, JTAGICE and JTAGICE mkII 
support the implemented calibration protocol. The usage of these tools to calibrate a 
device is described later. 

The calibration support in the STK500, AVRISP, JTAGICE and JTAGICE mkII is at 
present only supported in the command-line version of the tools. The calibration is 
supported from AVR Studio version 4.11 SP1 (or later). The newest release of AVR 
Studio can be downloaded from http://www.atmel.com/avr/. 

Calibration protocol The protocol for calibration is kept simple and fast to ensure that it can be used in 
production environments. The pins used for programming the devices, that is the ISP 
interface or the JTAG interface (if present), are used for the calibration as they are 
most likely to be available in a final product (or on PCB). 

2555E-AVR-03/05 
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Two pins are used for the calibration: MOSI and MISO on the ISP interface, or TDI 
and TDO on the JTAG interface. To simplify the description, only MOSI and MISO are 
referred to subsequently, though TDI and TDO can be used a well. 

The basic concept is that the programmer generates the calibration clock (C-clock), 
and that the device uses this as a reference to calibrate its internal RC oscillator. 
When the device has completed the calibration it signals “OK” to the programmer on 
the MISO line.  

The programmer is responsible for enabling a pull-up on the MISO line and the device 
for enabling pull-up on the MOSI line. This is done to ensure that noise is unlikely to 
corrupt the calibration.  

The programmer can use 1024 C-cycles (cycles on the C-clock) as time-out period, 
as the calibration routine is guaranteed to be completed within this number of C-
cycles. 

The calibration procedure runs through the following steps: 

1. The programmer writes the calibration firmware into the device, enables the 
MISO pull-up, and releases the reset line. The calibration clock is applied on the 
MOSI line. A frequency close to the frequency of a watch crystal (32.768kHz) is 
appropriate.  

2. The device enables the internal pull-up on the MOSI line and starts listening for 
the calibration clock on MOSI. 

3. When the device detects the calibration clock a binary search is used to find an 
OSCCAL value that meets the criteria of 1% accuracy. If the binary search does 
not reveal a value that meets this requirement, the neighboring values to the 
outcome of the binary search are tested to identify one that does.  

4. The calibration value is stored in EEPROM (In the case of failing calibration, this 
step is skipped). 

5. When calibration is completed successfully the MISO line is toggled 4 times by 
the device. The toggling of the MISO line is performed 5 to 10 CPU cycles after 
falling edge of the clock on the MOSI line (C-clock). In the case of failing 
calibration the MISO line is not toggled. 

6. If the device does not have an EESAVE fuse, the programmer must read back 
the calibration byte from EEPROM, for later restoring when the calibration 
firmware has been erased from the Flash. If the device have an EESAVE fuse, 
this fuse can be set so that erasing the Flash does not also erase the EEPROM. 

It is necessary to copy the calibration byte from EEPROM to the OSCCAL register at 
run-time. A routine for this must therefore be implemented in the final firmware. 

The calibration firmware The calibration code is written in assembly, for the AVR Studio 4.11 assembler with 
the calibration package installed. 

The calibration firmware is structured in a way so that it can easily be changed to 
match any of the devices listed in Table 1. Also, the interface for calibration can be 
changed. All required changes are made in the root file “RC_Calibration.asm” when 
calibrating using the AVR Tools. 

The root file refers to (includes) the following files: 

1. A device specific file (select the one matching the target device), e.g. “m16.asm” 
for Atmega16. The device-specific file further includes the following: 

a. The register and bit definition distributed with AVR Studio. 
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b. A memory map file that defines where the code is located and which 
EEPROM location to store the calibration byte in. 

c. An OSCCAL access macro file that controls how the OSCCAL register is 
accessed. The way of accessing the OSCCAL register depends on where 
in the IO file the OSCCAL register is located. 

d. An oscillator version file. This file defines the initial step-size used in the 
binary search to account for the fact that some OSCCAL registers are 7 
and some are 8 bits wide. 

e. A Return Stack initialization macro file. Some devices have hardware 
stack, while others have a stack in SRAM that needs initialization. 

f. A port access macro file, which defines how to access the registers 
related to the pins used in the calibration. This is needed since some 
registers are in the high part of the IO file and others are in the low part of 
the IO file. 

g. Redefinitions of bit and register names may also be present in the device 
file. 

2. A calibration interface specific file. This file assigns the ISP or JTAG port and pins 
with names (labels) used in the main code. The calibration clock frequency is 
specified in this file. 

3. The file defining the macros used - “macros.inc” 

4. The common calibration code “main.asm” 

The structure of the calibration code is designed to make it easy to change, in order 
to match a desired target device and interface. Furthermore, the extensive use of 
macros ensures that the code gets the smallest possible footprint. Finally, the way 
devices and calibration interfaces are designed ensures that support for new devices 
or interfaces can be implemented with a minimum of effort. 

The search is based on a binary search method, a divide-and-conquer method:  Binary search method 

1. The OSCCAL register is loaded with the initial value, which is half the maximum 
value of OSCCAL. The initial value of OSCCAL is defined as the initial Step-Size. 

2. The frequency of the system clock is then compared to an external reference, the 
calibration clock.  

a. If the frequency is within 1% accuracy limit, goto 5.  

b. If the system clock is found to be too fast the OSCCAL value is reduced, 
and if the clock is too slow OSCCAL is increased. Goto 3. 

3. Step-Size is assigned the value of half the previous Step-Size. 

a. If the Step-Size is zero, the binary search has not been successful, goto 
4. 

b. If Step-Size is different from zero, the Step-Size is added to or subtracted 
from the current value in the OSCCAL register to increase or decrease 
the oscillator frequency. Repeat step 2. 

4. Test the 4 nearest neighbor-values of OSCCAL. This is done to compensate for 
the lack of a strictly monotonous relationship between OSCCAL and oscillator 
frequency. 

a. If a tested OSCCAL value is within the accuracy limits, goto 5 

b. If none of the tested OSCCAL values are within the limits (not expected), 
signal on MISO that the calibration has failed by driving the line low. 

2555E-AVR-03/05 
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5. Store the calibration value in the EEPROM 

6. Signal that calibration has been completed successfully by toggling the MISO line 
4 times, synchronously to the calibration clock toggling. 

The comparison between the Calibration clock (C-clock) and the internal RC oscillator 
is performed using the 8-bit Timer/Counter0 (TC0). The 8-bit timer is used since it is 
present in all devices that have tunable RC oscillator. The idea is to time the duration 
of 40 C-clock cycles and compare the number of timer ticks to predefined limits. The 
C-frequency in the present implementation is given in the interface specific include 
file. The method for determining the oscillator frequency is described in the flowchart 
in Figure 3. 

Method for determining the 
oscillator frequency 

Figure 3. Flowchart of algorithm determining relationship between the C-clock and 
the internal oscillator frequency. 
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To be able to cover the full range of oscillator frequencies, from 1MHz to 9.6MHz, 
inspection of the TC0 overflow (OVF) flag is used to expand the timer by 8 bits, 
providing a 16-bit timer. The OVF flag is inspected once every half-cycle (of the C-
clock), which is sufficiently often to ensure that all TC0 OVF are detected. In relation 
to the range of the 16-bit timer implemented, the worst-case for overflow is at 9.6MHz 
where the OSCCAL register is loaded with 0xFF. In this case, the oscillator can be 
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100% above the specified frequency. The timer will in this case count to 23,541, 
which is within the range of the 16-bit timer. 

Going in the other direction, the lowest oscillator frequency must also be considered. 
The lowest obtainable frequency is when writing 0x00 to OSCCAL. In that case the 
frequency may be 50% lower than the specified one. Since the TC0 OVF flag is 
inspected every half-cycle, there is potentially no more than just above 7 CPU-cycles 
to handle the OVF flag and detect the next C-clock edge - at a specified frequency of 
1MHz. This timing constraint can be met when the OVF flag is not set, but when the 
flag is set 8 cycles are required. This will cause a small error in the detection of the 
timing, but will not affect the overall outcome: the oscillator will correctly be 
determined as too slow.  

These extremes are however very unlikely to be encountered due to the binary 
search method used. However, they may be relevant to consider if the calibration 
method is modified. 

Since it is not possible to use interrupt driven detection for the C-clock edges for all 
devices, a polling method is implemented. The consequence of this implementation is 
that the edge detection can be delayed by up to 2 CPU cycles.  Potentially this can 
make the calibration fail to reach the desired accuracy of 1%. To compensate for this 
potential timing error, the limits are tightened by 2 timer-ticks (2 CPU-cycles). 

Correcting timing 
inaccuracies 

All calculations of limits and constants are performed by the preprocessor, which uses 
32 bit accuracy in AVRASM and 64-bit in AVRASM2. All values that cannot be 
represented (floats) are rounded towards a tighter accuracy and will therefore not 
endanger the goal of +/-1% accuracy for the oscillator.  

The calibration firmware does not take into account inaccuracies in the calibration 
clock source. Refer to the “Calibration Clock Accuracy” section of this document for 
details on how to minimize the effect of this. 

Using STK500, AVRISP, JTAGICE or JTAGICE mkII for calibration 
The source code of the calibration firmware and the batch file provided is made as an 
example of how to use the STK500, AVRISP, JTAGICE or the JTAGICE mkII to 
perform calibration. The firmware needs few or no modifications to be used in other 
calibration systems. 

Assembling the 
calibration firmware 

The root file for the calibration firmware is the RC_Calibration.asm file. This file is 
added to an assembly project in AVR Studio 4.11 SP1 (or later). In this file it is 
possible to include the target device and specify the desired calibration interface: 
STK500, AVRISP, JTAGICE or JTAGICE mkII. Further, it is possible to specify the 
desired calibration accuracy, and not least the desired frequency of the target device. 

Once these choices have been made, build the project to produce the binary file 
“rc_calib.hex”. This file is used to calibrate the device. 

Note that it is important to ensure that the fuses are set up correctly before calibrating 
the device: it is not possible to calibrate a device to 8.0MHz if the 1MHz RC oscillator 
is selected by the fuse settings. 

Using the command line 
tools 

The calibration support in the STK500, AVRISP, JTAGICE and JTAGICE mkII is at 
present only supported in the command-line version of the tools (AVR Studio 4.11 
SP1 or later). The software package that provides this support can be found at 
http://www.atmel.com/avr/. Please install this package for calibration support.  

The package includes a new firmware for the AVR tools, which is required to enable 
calibration. The firmware upgrade is automatic when first connecting to the tool with 
AVR Studio 4.11 SP1 (or later) or manual as described in the AVR Studio help. 

2555E-AVR-03/05 
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Three batch files are provided along with the source code. These batch files show 
how the command line tools can be used to program the calibration code into the 
target device, perform the calibration and hence reprogram the device with the final 
firmware. The three batch files are performing calibration of the ATmega16 through 
the STK500 or ISP, JTAGICE and the JTAGICE mkII, respectively. Please study 
these batch files and the AVR Studio integrated help to understand the use of the 
STK500/ISP, JTAGICE and JTAGICE mkII command line tools. Table 2 includes a list 
of the new commands to the exe files that are related to the calibration operation.  

 

Table 2. New oscillator calibration specific options in stk500.exe and jtagice.exe. 
Command Description 
-Z [addr] Read calibration byte from EEPROM memory. ‘addr’ is byte address. The 

read operation is performed before the “chip erase” is executed.  
Using ‘-S#’ will re-write the value to flash or EEPROM after the chip erase. 

-Y Perform the oscillator calibration sequence. This command will override all 
other operations. The exe file will return an errorlevel 1 if it does not get the 
acknowledge signal from the target device. 

 

Adding support for new 
devices 

To add support for a new device, all that is needed is to copy the device file for a 
similar device (pin compatible if possible) and adapt it to the new device’s 
characteristics. The checklist below can be used when adapting a file to a new 
device. The checklist uses the ATmega8535 as example. 

1. Copy the device file for a pin and feature compatible device.  

a. The ATmega8535 is pin compatible with ATmega16, though the 
ATmega8535 has no JTAG interface. The file “m16.asm” is therefore 
copied and named “m8535.asm” 

2. Change the register and bit definition file included to match the new device 

a. For the ATmega8535 the register and bit definition file is “m8535.inc” 

3. Change the pin-out description file to match the pin-out of the device. 

a. Since the ATmega8535 does not have JTAG interface as the ATmega16, 
the pin-out file is changed to the “s8535_family_pinout.inc” file. 

4. Change the oscillator version file to match the oscillator of the new device. 

5. Add the new file to the device list in the RC_Calibration file. 

6. Verify that it assembles correctly. If it does not, this is most likely due to changed 
register or bit names of ports, pins, or timers. ATtiny13 (t13.asm) is implemented 
as a reassignment of ATtiny12, and can be used as a reference to reassigning 
names. 

 Performance of the Calibration firmware 
The code has been written with focus on efficiency: The entire calibration should be 
performed fairly quickly. The performance therefore depends on the size of the 
calibration firmware and the time it takes to complete the calibration. 

The calibration firmware is 183 to 240 bytes, depending on the target device and the 
interface used for calibration. The required time to program the firmware is therefore 
short. 
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The calibration routine is completed in less than 1024 calibration cycles. The shortest 
duration is however dependent on how fast the binary search algorithm can find a 
suitable OSCCAL value, and the write time of the EEPROM. In the present 
implementation, using STK500.exe or JTAGICE.exe, the calibration itself is 
completed in less than 32ms. 

Calibration Clock Accuracy 
The accuracy of the calibration is highly dependent on the accuracy of the external 
calibration clock. The calibration clock frequency generated by the AVR tools may 
vary. It is therefore important to measure the exact frequency of the tool used and 
enter it into the interface specific source file. Since resonators are dependent on both 
operating voltage and temperature, the calibration frequency should be measured 
when these parameters equals the conditions during calibration. 

Quick Start Guide to Calibration of the internal RC 
To get started using the calibration feature in one of the device already supported one 
can follow steps below. 

1. Download and unzip the source code for AVR053 (any location can be used, here 
called \AVR053\). 

2. Download and install AVR Studio 4.11 SP1 from http://www.atmel.com/avr/ 

3. Open AVR Studio, make a new project called “rc_calib”, and add the root source 
code file, RC_Calibration.asm, to the project. 

4. Select a target device from the list in RC_Calibration.asm, by removing and 
adding the semi-colon (";") in front of the device lines. 

5. Select the interface, which is going to be used for the calibration in the same way 
as for the device selection. 

6. Measure the frequency of the calibration clock with a frequency counter or an 
oscilloscope. This signal can be found on the MOSI pin on STK500/AVRISP and 
the TDI pin on JTAG ICE. Change the line in the interface specific file “.EQU 
CALIB_CLOCK_FREQ = XXXX” to reflect the measured frequency. 

7. Specify the desired target frequency and the desired accuracy. Note that if the 
accuracy is too tight it may not be possible to calibrate the device and the 
calibration will fail. Refer to the data sheet for obtainable accuracy. 

8. Assemble the project to generate the hex binary file that should be programmed 
into the device. 

9. If the STK500/AVRISP is going to be used for the calibration: 

a. Open the file “\AVR053\AVR Asm\Batch file\ISP_rc_calib.bat” in an 
editor. (STK500.exe -h for info on arguments). 

b. Edit the file to match the desired device, by changing the  
-datmega16 argument to -d[target device]. 

c. Change the fuse setting to the desired setting. Make sure that the 
settings correspond with the desired calibration: select 8MHz internal RC 
if calibrating the device to 8MHz. The fuse setting is specified through the 
arguments -E (extended fuses) and -f (high/low fuses). Make sure that 
the Watchdog Timer always on fuse is not set. 

d. If the install path for AVR Studio differs from the one used in the batch file 
(the standard in English Windows versions), please changes the path to 
the stk500.exe file. 
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e. Save the file. 

10. If the JTAGICE is going to be used for the calibration: Please note that the reset 
line must be available for the JTAGICE. 

a. Open the file \AVR053\AVR Asm\Batch file\JTAGICE_rc_calib.bat in an 
editor. (jtagice.exe -h for info on arguments). 

b. Edit the file to match the desired device, by changing the  
-datmega16 argument to -d[target device]. 

c. Change the fuse setting to the desired setting. Make sure that the setting 
corresponds with the desired calibration: select 8MHz internal RC if 
calibrating the device to 8MHz. The fuse setting is specified through the 
arguments -E (extended fuses) and -f (high/low fuses). Make sure that 
the Watchdog Timer always on fuse is not set. 

d. If the install path for AVR Studio differs from the one used in the batch file 
(the standard in English Windows versions), please changes the path to 
the jtagice.exe file. 

e. Save the file. 

11. If the JTAGICE mkII is going to be used for the calibration: Please note that the 
reset line must be available for the JTAGICE mkII. 

a. Open the file \AVR053\AVR Asm\Batch file\JTAGICE_mkII_rc_calib.bat 
in an editor. (jtagiceii.exe -h for info on arguments). 

b. Edit the file to match the desired device, by changing the  
-d ATmega16 argument to –d [target device]. 

c. Change the fuse setting to the desired setting. Make sure that the setting 
corresponds with the desired calibration: select 8MHz internal RC if 
calibrating the device to 8MHz. The fuse setting is specified through the 
arguments -E (extended fuses) and -f (high/low fuses). Make sure that 
the Watchdog Timer always on fuse is not set. 

d. If the install path for AVR Studio differs from the one used in the batch file 
(the standard in English Windows versions), please changes the path to 
the jtagiceii.exe file. 

e. Save the file. 

12. Connect the STK500, AVRISP, JTAGICE or the JTAGICE mkII to the target 
board. Power the tool and application. Make sure that the serial cable is attached 
between the tool and the PC. 

13. Open a command shell window (a DOS prompt). Navigate to the directory 
“\AVR053\AVR Asm\Batch file\”. Execute the batch file (ISP_rc_calib.bat, 
JTAGICE_rc_calib.bat or JTAGICE_mkII_rc_calib.bat). 

14. Wait a short while for the calibration to complete. 

The batch file can also be modified to program a custom firmware rather than the 
test.hex firmware after the calibration. Be aware that the new calibration value should 
be loaded into the OSCCAL register at runtime by the firmware. 
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